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WHY MOCHAS?

MOChAs self-assemble and 
can be synthesized at gram 
scale or as thin films.

Organic ligands provide scaffolding 
for inorganic structure. Provides 
immense tunability.

The inorganic 
structure is 
continuous, 
low-dimensional, 
and dominates 
electronic structure.
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HOW TO DESIGN MOCHAS?

Given ligand X and transition metal Y? ➜ Combinatorial explosion!

X…



HOW TO DESIGN MOCHAS?

Simplify problem by first focusing on 
design of inorganic structure.

Can we explore the low-dimensional 
inorganic structure independent of bulk?

• How much do VdW bonded 
subunits interact?

• How much does the ligand impact 
bands near the Fermi level?
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• Are properties invariant for any number of layers?
• Does this material display 2D quantum confinement?

MITHRENE (AgSePh) 

How to answer? Experiment — hard. Theory — easy(er).
Let’s use density functional theory (DFT)!
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MITHRENE — PBE band structure (spaghetti)
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MITHRENE — PBE band structure (spaghetti)

• Direct band gap at Γ.
• Organic bands and inorganic bands are well separated.
• Low mobility between layers.
• At the level of DFT with short-range exchange (HSE), 

layers no difference between layer and bulk.
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“Ligand agnostic” calculation captures main characteristics of 
electronic structure.
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“Ligand agnostic” calculation captures main characteristics of 
electronic structure.

Remaining bands are Ag and 
Se bands in layer with ligands.

Band gap and mobility altered 
but not drastically.
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VdW bonded subunits interact weakly. Ligands do 
not contribute strongly to bands near the Fermi-level.

We can make useful models by simply focusing on the 
inorganic structure. 

This saves computational time, allowing us to 
thoroughly study how geometry impacts electronic 
properties.



GEOMETRY CASE STUDY: 
Pb Seesaw chalcogenide chains
Seesaw units. Pb and S.

Chiral
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C-S bonds. Carboranes 
coordinating chalcogenide chain.
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C-S bonds. Carboranes 
coordinating chalcogenide chain.

{

{

Parameterize structure by two intra-unit parameters and one 
inter-unit parameter.



Yellow
Red
Blue

closest to exp. values
structures calculated

other structures periodic 
with 4 tetrahedra

Optimize for periodicity
(ex: 4 tetrahedra / unit cell) 
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Biggest changes in electronic structure 
are driven by changes in bond lengths.

Band Gap (eV) [LDA]

Insulating to metallic

Insulating to metallic
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HOW DOES SCREENING (GW) AFFECT MITHRENE AND VARY WITH DISTANCE?

d

DFT+GW calculations are very time 
consuming. 

Being able to calculate variation of 
screening with this toy model is very 
useful.

Also, able to separate effects of ligands 
versus inorganic structure.
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HOW TO DESIGN MOCHAS?

Current Strategy:
1. Focus first on inorganic structure.
2. Parameterize unit and connections.
3. Explore deformations and 

arrangements: geometry and 
electronics.

4. Given a configuration, fit for ligands.
5. Is the configuration kinetically 

favored?

• Need to generate new inorganic 
structures to feed into this 
workflow!

• Need to fit for ligand!
• Self-assembly oh my!
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Calling in back up (slides)!



What you should know about density functional theory.

The most widely used method for calculating electronic structure.
Calculates the ground state.

Functional?
A function that takes function(s) as its argument(s).
charge density ➜ functional ➜ single particle wave function

Exact if we knew the “universal functional”.

functional
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Alphabet soup!
😄 LDA (Local Density Approximation) — Fermi gas
😄 GGA (General Gradient Approximation) — some interactions
😄 PBE — a type of GGA
� HSE — PBE with “short range” exact exchange

       (interactions due to electrons being identical particles)
�/😰 GW — used to calculate electron screening
😰/😭 BSE — used to calculate quasiparticle production (electron + hole)

The longer your method acronym, the better your calculation!
(Just kidding… almost…)
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What you should know about density functional theory.



Computationally tractable for < ~1,000 atoms.
Typically scales O(n3) where n is number of electrons.

On each person in Jeff’s group uses 
~3 million CPU hours per year.

Easier to get
Structure
Total formation energy

Tricky but possible
Accurate band gaps
Dispersion (VdW, etc.)
Screening
Excited state properties (excitons)

Atoms vs. Theorist
10 😄
30 😊
100 �
200 �
500 😰
1000 😭
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What you should know about density functional theory.



WHAT ARE MOCHAS?

Comprised of regular geometric patterns.



CASE STUDY: 
Seesaw chalcogenide chains

Seesaw units. Pb on right Hg on left.

Two different connectivities. 

C-S bonds. Carboranes 
coordinating chalcogenide chain.

Chiral NOT Chiral
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HOW ARE THE TWO STRUCTURES RELATED?
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