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How 10 DESIGN MOCHAS?

Given ligand X and transition metal Y? =¥ Combinatorial explosion!
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How 10 DESIGN MOCHAS?

Simplify problem by first focusing on
design of inorganic structure.

Can we explore the low-dimensional
inorganic structure independent of bulk?
. How much do VAW bonded

subunits interact?
- How much does the ligand impact
bands near the Fermi level?
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MiTHRENE (AgSePh)
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. Are properties invariant for any number of layers?
Does this material display 2D quantum confinement?

How to answer? Experiment — hard. Theory — easy(er).
Let’s use density functional theory (DFT)!
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MiTHRENE — PBE band structure (spaghetti)

Wavevector

Tess Smidt | Geometry and Electronic Structure of MOChAs | 2016.04.28



MiTHRENE — PBE band structure (spaghetti)

r Z H, TLYO 15 30
Wavevector DOS

Direct band gap at I'.
Organic bands and inorganic bands are well separated.

Low mobility between layers.
At the level of DFT with short-range exchange (HSE),
layers no difference between layer and bulk.
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“Ligand agnostic” calculation captures main characteristics of
electronic structure.
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“Ligand agnostic” calculation captures main characteristics of
electronic structure.
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Band gap and mobility altered
but not drastically.
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“Ligand agnostic” calculation captures main characteristics of
electronic structure.
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VdW bonded subunits interact weakly. Ligands do
not contribute strongly to bands near the Fermi-level.

[\

We can make useful models by simply focusing on the
Inorganic structure.

0 This saves computational time, allowing us to

thoroughly study how geometry impacts electronic
properties.

Energy (eV)

T —====ee  Band gap and mobility altered
- 7 ~py butnotdrastically.
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(GEOMETRY CASE STUDY:

Pb Seesaw chalcogenide chains C-S bonds. Carboranes

Seesaw units. Pb and S. coordinating chalcogenide chc

Chiral
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(GEOMETRY CASE STUDY:

Pb Seesaw chalcogenide chains C-S bonds. Carboranes
coordinating chalcogenide chc

[
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Seesaw units. Pb and S.

Chiral

Parameterize structure by two intra-unit parameters and one
inter-unit parameter.

— bond ratio
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Optimize for periodicity
[ex: 4 tetrahedra /[ unit cell]
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Biggest changes in electronic structure
. are driven by changes in bond lengths.
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How DOES SCREENING (GW) AFFECT MITHRENE AND VARY WITH DISTANCE?

DFT+GW calculations are very time
consuming.

N £ Being able to calculate variation of
b Y O screening with this toy model is very
useful.

d Also, able to separate etfects of ligands
versus inorganic structure.
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How 10 DESIGN MOCHAS?

Current Strategy:

1.
2.

3.
4.
D

Focus first on inorganic structure.
Parameterize unit and connections.
Explore deformations and
arrangements: geometry and
electronics.

Given a configuration, fit for ligands.

Is the configuration kinetically
favored?

Need to generate new inorganic
structures to feed into this
workflow!

Need to fit for ligand!
Self-assembly oh my!
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Current Strategy:

1. Focus first on inorganic structure.

2. Parameterize unit and connections.

3. Explore deformations and
arrangements: geometry and
electronics.

4. Given a configuration, fit for ligands.

5. Is the configuration kinetically
favored?
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- Need to generate new inorganic
structures to feed into this
workflow!

. Need to fit for ligand!

. Self-assembly oh my!



Calling in back up (slides)!




What you should know about density functional theory.

The most widely used method for calculating electronic structure.
Calculates the ground state.

Functional?
A function that takes function(s) as its argument(s).

charge density = functional =» single particle wave function

Exact if we knew the “universal functional”.

Charge density
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What you should know about density functional theory.

Alphabet soup!
@ LDA (Local Density Approximation) — Fermi gas
@ GGA (General Gradient Approximation) — some interactions
@ PBE — a type of GGA
HSE — PBE with “short range” exact exchange
(interactions due to electrons being identical particles)
/@ GW — used to calculate electron screening
@ /@ BSE — used to calculate quasiparticle production (electron + hole)

The longer your method acronym, the better your calculation!
(Just kidding... almost...)
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What you should know about density functional theory.

Computationally tractable for < ~1,000 atoms.
Typically scales O(n3) where n is number of electrons.

On each person in Jeff’s group uses
~3 million CPU hours per year.

Easier to get Atoms vs. Theorist
Structure 10 Qo

Total formation energy 30 e

Tricky but possible ;(())(())

Accurate band gaps @
Dispersion (VAW, etc.) 000

Screening 1000 &

Excited state properties (excitons)
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Comprised of regular geometric patterns.

WHAT ARE MOCHAS?




CASE STUDY: C-S bonds. Carboranes
Seesaw chalcogenide chains coordinating chalcogenide chain.

Seesaw units. Pb on right Hg on left.

Chiral
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HoOwW ARE THE TWO STRUCTURES RELATED?

DO
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