An Automated Ab Initio Search for Ferroelectrics

Qualifying Exam for PhD Candidacy

Tess E. Smidt

Tess E. Smidt | Qualifying Exam for PhD Candidacy | April 21, 2017

Outline

Introductions to Ferroelectrics Search Overview Search Details Candidates Future Work Conclusions

Other projects from my research

Intro. to Ferroelectrics → Search Overview → Search Details → Candidates → Future Work → Conclusions

Ferroelectrics are a product of symmetry breaking.

Example ferroelectric: BaTiO₃

Known ferroelectric since mid-1940s. (von Hippel et al in 1944 and Wul in 1946)

Ba (A site)

Ti

0

(B site)

Intro. to Ferroelectrics → Search Overview → Search Details → Candidates → Future Work → Conclusions

Ferroelectrics are a product of symmetry breaking.

Example ferroelectric: BaTiO₃

Cubic

Known ferroelectric since mid-1940s. (von Hippel et al in 1944 and Wul in 1946)

 $P_{s(20^{\circ}C)} = 26 \ \mu C / \text{cm}^2$

Wemple, S. H., et al. Journal of Physics and Chemistry of Solids 29.10 (1968): 1797-1803.

Phase transitions lead to different polarization directions.

Intro. to Ferroelectrics → Search Overview → Search Details → Candidates → Future Work → Conclusions

6

Atomically, this corresponds to switching BaTiO₃

Intro. to Ferroelectrics → Search Overview → Search Details → Candidates → Future Work → Conclusions

Intro. to Ferroelectrics → Search Overview → Search Details → Candidates → Future Work → Conclusions

We automate a firstprinciples computational ferroelectric search.

We automate a firstprinciples computational ferroelectric search.

Why?

Fundamental physics. Technologically useful.

Still many materials out there that we don't know are ferroelectric!

Might find something surprising!

We automate a firstprinciples computational ferroelectric search.

+

Ferroelectric candidates

Why?

Fundamental physics. Technologically useful.

Still many materials out there that we don't know are ferroelectric!

Might find something surprising!

Proof of principle:

Materials Project database.

Our dataset is the first large dataset (100s of candidates) of known and new ferroelectrics calculated with a standardized method that permits straightforward comparison. Ferroelectrics belong to polar space groups because polarization vector is compatible with the crystal symmetry.

Polar space groups have polar point groups.

Out of the 32 point groups, there are 10 polar points groups: (1, 2, m, mm2, 4, 4mm, 3, 3m, 6, 6m)

Ferroelectrics belong to polar space groups because polarization vector is compatible with the crystal symmetry.

Polar space groups have polar point groups.

Out of the 32 point groups, there are 10 polar points groups: (1, 2, m, mm2, 4, 4mm, 3, 3m, 6, 6m)

Previous work has used these symmetry requirements but in total only suggest ~50 candidates. Only some have DFT calculations.

Our first automated search has already yielded ~100 diverse new candidates.

- S. C. Abrahams, Structurally Based Prediction of Ferroelectricity in Inorganic Materials with Point Group 6mm, Acta Cryst. B44, 585-595 (1988).
- E. Kroumova, M.I. Aroyo, and J.M. Perez-Mato, Prediction of new displacive ferroelectrics through systematic pseudosymmetry search, Acta Cryst. Sect. B Struct. Sci. 58, 921 (2002).
- J.W. Bennett and K.M. Rabe, Integration of first-principles methods and crystallographic database searches for new ferroelectrics, J. Solid State Chem. 195, 21 (2012).
- K. Garrity, High-throughput first principles search for new ferroelectrics, arXiv:1610.04279 (2016) [searching for soft phonons modes]

Predicting ferroelectrics from first-principles:

Calculate polarization along continuous path from a nonpolar reference phase to ferroelectric polar phase.

Intro. to Ferroelectrics → Search Overview → Search Details → Candidates → Future Work → Conclusions

15

We've automated the following:

1.Identifying candidate nonpolar-polar structure pairs and checking their symmetry relations.

We've automated the following:

- 1.Identifying candidate nonpolar-polar structure pairs and checking their symmetry relations.
- 2.Performing density functional theory (DFT) calculations of total energy and polarization across the distortion.

Intro. to Ferroelectrics → Search Overview → Search Details → Candidates → Future Work → Conclusions

We've automated the following:

- 1.Identifying candidate nonpolar-polar structure pairs and checking their symmetry relations.
- 2.Performing density functional theory (DFT) calculations of total energy and polarization across the distortion.
- 3.Post-processing calculation data to recover the effective polarization.

We've automated the following:

- 1.Identifying candidate nonpolar-polar structure pairs and checking their symmetry relations.
- 2.Performing density functional theory (DFT) calculations of total energy and polarization across the distortion.
- 3.Post-processing calculation data to recover the effective polarization.
- 4. Validating the quality of each ferroelectric candidate.

We've automated the following:

- 1.Identifying candidate nonpolar-polar structure pairs and checking their symmetry relations.
- 2.Performing density functional theory (DFT) calculations of total energy and polarization across the distortion.
- 3.Post-processing calculation data to recover the effective polarization.
- 4. Validating the quality of each ferroelectric candidate.
- 5.Creating an interface for viewing the results for all candidates.

How do we find nonpolar-polar structure pairs that can be distorted into one another?

Intro. to Ferroelectrics \rightarrow Search Overview \rightarrow Search Details \rightarrow Candidates \rightarrow Future Work \rightarrow Conclusions

Step 0: Find nonpolar-polar group-subgroup pairs of same composition. *(pymatgen)*

All symmetry operations in the polar space group are in the nonpolar space group.

Step 0: Find nonpolar-polar group-subgroup pairs of same composition. (pymatgen)

All symmetry operations in the polar space group are in the nonpolar space group.

Intro. to Ferroelectrics → Search Overview → Search Details → Candidates → Future Work → Conclusions

Step 0: Find nonpolar-polar group-subgroup pairs of same composition. (pymatgen)

All symmetry operations in the polar space group are in the nonpolar space group.

Once we have a pair, we check whether the pair of structures found in the database can be distorted into one another.

orthorhombic structure

Once we have a pair, we check whether the pair of structures found in the database can be distorted into one another.

orthorhombic structure

Once we have a pair, we check whether the pair of structures found in the database can be distorted into one another.

Step 1: Transform nonpolar structure to polar setting.

(python scripts that interact with the Bilbao Crystallographic Server)

Step 1: Transform nonpolar structure to polar setting. (python scripts that interact with the Bilbao Crystallographic Server)

1a. Compute index of group-subgroup relation.

$$i = i_k \cdot i_t = \begin{pmatrix} ratio of number of \\ formula units in primitive \\ cell polar to nonpolar \end{pmatrix} \mathbf{x} \begin{pmatrix} ratio of point \\ group operations \\ nonpolar to polar \end{pmatrix}$$

 i, i_k, i_t are always positive integers.

Step 1: Transform nonpolar structure to polar setting. (python scripts that interact with the Bilbao Crystallographic Server)

1a. Compute index of group-subgroup relation.

$i = i_k \cdot i_t =$	ratio of number of formula units in primitive cell polar to nonpolar	x	ratio of point group operations nonpolar to polar	
-----------------------	--	---	---	--

 i, i_k, i_t are always positive integers.

RaTiO ₂		Ν	HM Symbol	ITA	index	t-index	k-index	More info	
Dario3	rhombohedral	1	R3m	160	8	8	1	show	No change in
subgroups of		2	R3	146	16	16	1	show	number of
cubic Pm-3m	m tetragonal orthorhombic	3	P4mm	099	6	6	1	show	formula units for subgroups with i _k = 1.
		4	P4	075	12	12	1	show	
		5	Amm2	038	12	12	1	show	
		6	Cmm2	035	12	12	1	show	
		7	Pmm2	025	12	12	1	show	
		8	Cm	008	24	24	1	show	
		9	Pm	006	24	24	1	show	
		10	C2	005	24	24	1	show	
		11	P2	003	24	24	1	show	
		12	P1	001	48	48	1	show	

Step 1: Transform nonpolar structure to polar setting. (python scripts that interact with the Bilbao Crystallographic Server)

1b. Get transformation for chains of compatible maximal subgroups.

Check		Chain [indices]	Chain with HM symbols	Transformation I	Identical
0	1	221 215 160 [2 4]	Pm-3m > P-43m > R3m	$\left(\begin{array}{rrrrr} -1 & 0 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right)$	to group 1
0	2	221 166 160 [4 2]	Pm-3m > R-3m > R3m	$\left(\begin{array}{rrrrr} 1 & 0 & 1 & 0 \\ -1 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right)$	to group 2
0	3	221 166 160 [4 2]	Pm-3m > R-3m > R3m	$\left(\begin{array}{rrrrr} -1 & 0 & -1 & 0 \\ -1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{array}\right)$	to group 3
0	4	221 166 160 [4 2]	Pm-3m > R-3m > R3m	$\left(\begin{array}{rrrrr} 1 & 0 & 1 & 0 \\ 1 & -1 & -1 & 0 \\ 0 & 1 & -1 & 0 \end{array}\right)$	to group 4

1C. Get atomic positions in transformed unit cell.

Use Wyckoff splitting.

Pm-3m P4mm 8g 8g 8g 8g 8g 8g 48n 4d 4d 8g 8g 24m 4f 4f 4f 4f 8g 241 4e 4e 4e 4e 8g 24k 4f 4f 4d 12j 12i 4e 4e 4d 12h 4f 4e 2c 2c 4d 4d 8g 4f 1b 1b 6f 4e 1a 1a 6e 2c 1a 3d 3c 2c 1b 1b 1b 1a 1a

3 symmetrically unique positions

ions ³³

4 symmetrically unique positions

Intro. to Ferroelectrics → Search Overview → Search Details → Candidates → Future Work → Conclusions

Wyckoff positions

2a. Check that the transformed nonpolar lattice is similar to the polar lattice.

2a. Check that the transformed nonpolar lattice is similar to the polar lattice.

Lattice length tolerance: < 3 Å Lattice angle tolerance: < 10 °

BaTiO₃

cubic structure in

cubic structure in orthorhombic setting

nonpolar

a = 4.04, b = 5.71, c = 5.71 $\alpha = \beta = \gamma = 90^{\circ}_{35}$

orthorhombic structure in orthorhombic setting

polar

a = 3.99, b = 5.81, c = 5.89 $\alpha = \beta = \gamma = 90^{\circ}$

2C. Check that no atom moves more than 1.5 Å throughout the distortion.

Max displacement ~ 0.15 Å

Using the Vienna Ab Initio Software Package (VASP) for density functional theory calculations.

(1000 / number of atoms) k-points.PAW pseudopotentials520 eV energy cutoff for plane wave basis.

Using input parameter sets from pymatgen **MPRelaxSet** and **MPStaticSet**

Using DFT PBE (GGA) functional to compare to Materials Project calculations.

We expect PBE to overestimate polarization due to larger calculated unit cell volumes.

pymatgen

38

DFT workflow used in proof-of-principle search. Many variations possible!

Let's define polarization to be the dipole moment per unit volume.

For a 1D chain of alternating charges:

Let's define polarization to be the dipole moment per unit volume.

Polarization is not uniquely defined.

Polarization is defined on a lattice

$$\vec{P} = \vec{P_0} + \sum_{i \in 1,2,3} \frac{e\vec{R_i}}{\Omega}$$

e: electron charge R: lattice vector Ω: unit cell volume

Intro. to Ferroelectrics \rightarrow Search Overview \rightarrow Search Details \rightarrow Candidates \rightarrow Future Work \rightarrow Conclusions

Then, we take the next structure's polarization and move it closest to the previous structure's polarization.

Intro. to Ferroelectrics \rightarrow Search Overview \rightarrow Search Details \rightarrow Candidates \rightarrow Future Work \rightarrow Conclusions

51

Then, we take the next structure's polarization and move it closest to the previous structure's polarization.

Intro. to Ferroelectrics \rightarrow Search Overview \rightarrow Search Details \rightarrow Candidates \rightarrow Future Work \rightarrow Conclusions

52

Then, we take the next structure's polarization and move it closest to the previous structure's polarization.

Intro. to Ferroelectrics → Search Overview → Search Details → Candidates → Future Work → Conclusions

Then, we take the next structure's polarization and move it closest to the previous structure's polarization.

$$P_s = P_p - P_{np}$$

Intro. to Ferroelectrics → Search Overview → Search Details → Candidates → Future Work → Conclusions

54

We use the smoothness of splines fitted to the total energy and polarization to validate our calculations.

We use the following criteria for validating a given candidate: The max difference of the polarization fitted spline must be $< 1 \ \mu$ C/cm². The max difference of the energy fitted spline must be < 10 meV.

These cutoffs are determined empirically.

Interface: To more easily look at our data in aggregate, we created an interface generated from our calculation database.

Workflow ID	mula MP Polar ID	MP Nonpolar ID	<u>P</u> Smooth (a)	P Smooth (b)	P Smooth (c)	E Smooth	Polar Minimum'	Nonpolar Minimum?	Polar Spacegroup	Nonpolar Spacegroup	P Change (muC/cm^2)	E Change (meV)	Max Nonpolar Polarization	Polar Above Hull Energy (meV)	PBE Band D Gap ((eV)	(AA)	Relaxed D_max ((AA) 1	Max % diff. Lattice	Max <u>%</u> diff. Angles	Volume % diff,
wfid 1476040203.326613 Ag(CO)2	mp- 600237	<u>mp-</u> 654937	0.000	0.000	0.000	0.000	True	True	5	15	0.039	2.348	0.000	15.559 0	.9804 0.	0760 0	.1080 -	0.000 0	0.000	-0.016
wfid 1476040837.97019 Ag2S	mp- 32669	mp-36216	0.000	0.000	0.000	0.000	True	True	36	63	0.372	-2.473	0.000	75.240 1	.3419 0.	.1011 0	.0931 0	0.012 (0.000	0.006
wfid 1484444992.013915 Ag3SI	mp- 675879	mp- 558189	0.000	0.012	0.000	0.000	True	True	4	221	0.686	-40.675	0.000	79.837 0	0.26 0.	7567 2	.2343 0	0.014 (800.0	-0.012
wfid 1476041051.123043 Ag3SI	mp- 22995	mp- 558189	0.000	0.000	0.007	0.000	True	True	146	221	11.755	-49.922	000.0	70.659 0	0.5052 0.	5980 0	.6009 -	0.006 (0.000	-0.028
wfid_1476040056.258909 Al(HO)3	<u>mp-</u> 626435	mp- 626414	0.068	0.097	0.069	0.000	True	True	1	2	1.455	-9.493	5.544	4.119 4	4.9631 0.	4207 0	.3259 0	0.031 -	0.007	-0.019
wfid_1476040897.624205 Al11AgO	017 <u>mp-</u> 849760	mp- 766293	0.000	0.000	0.007	wfi	d 14	76040	944.5	3976										.002
wfid 1476040966.672844 AI3Pb5F1	19 <u>mp-</u> 541732	<u>mp- mp-</u> 541732 557911 0.000 0.000 0.006 Polarization Adjusted (a,b,c)														001				
wfid 1484445148.273011 AlBiO3	<u>mp-</u> 551918	mp-23080	0.005	0.003	0.063		10			_	10			-	40				-	046
wfid_1476040452.983312 AlHg2Sb	Cl4 <u>mp-</u> 570828	<u>mp-</u> 568001	0.000	0.000	0.000		5				5				20		-	-		.007
wfid 1476040139.05518 Ba2YF7	mp- 768350	<u>mp-</u> 777744	0.000	0.003	0.000	cm ²				cm ²				/cm ²	0	-				055
wfid 1484694771.994384 BaAl2O4	<u>mp-</u> 4202	mp-3828	0.000	0.000	0.000	PIC)				µC)				pu	20					.002
wfid_1484444978.482971 BaAl2O4	<u>mp-</u> 4202	<u>mp-</u> 619456	0.000	0.000	0.000		10				10			_	-40	- 17 - 17 -				.003
wfid 1476040115.133166 BaCO3	mp- 762225	mp-34195	0.000	0.065	0.000		-10 <mark>0 1 2</mark>	3 4 5 Nonpolar to	6 7 8 Polar	9 -	¹⁰ 0 1 2 Nor	3 4 5 npolar t	6 7 8 o Polar	9	0 1	2 3 Nonp	4 5 olar to	6 7 Polar	8 9	017
wfid_1476040109.318651 BaCa(CO	03)2 <u>mp-</u> <u>644852</u>	mp-6568	0.000	0.010	0.000															061
wfid_1484445295.230944 BaLaCl5	<u>mp-</u> 770427	mp- 770125	0.000	0.011	0.000	Ener	gy			Disto	rtion									048
wfid_1476041035.850896 BaNiO3	<u>mp-</u> 19241	mp-19138	0.000	0.000	0.001									_		_				002
wfid 1476040196.242976 BaTi2O5	<u>mp-</u> 555966	<u>mp-3943</u>	0.000	0.008	0.000	-	-7.976			1	C			For	mul	a: E	BaTi	03		002
wfid 1484444953.778541 BaTiO3	<u>mp-</u> 5777	<u>mp-2998</u>	0.000	0.000	0.051	Ш	-7.978	~						Pol	ar S	G: 9	99			0.031
wfid 1476040947.794782 BaTiO3	<u>mp-</u> 12992	mp-2998	0.000	0.000	0.018	er At	-7.982				•	•		N				001		0.028
wfid 1476040944.53976 BaTiO3	<u>mp-</u> 5986	mp-2998	0.000	0.000	0.035	eV p	-7.986		1	-	-	·		NO	npoi	art	5G:	221		0.029
wfid 1484445287.593799 BeH8(NF	72)2 <u>mp-</u> <u>24614</u>	mp- 720982	0.000	0.000	0.000		-7.988	2 3 4	678	0 1	0		b	PB	E Ga	ap:	1.72	265		0.020
wfid 1484445283.158561 BeH8(NF	F2)2 mp- 24614	mp- 604245	0.000	0.000	0.000			Nonpolar	to Polar		a	•	<u> </u>	ЦС	FG	an.	Non	0		0.014
wfid 1484445014.628732 Ca3Mn2C	07 <u>mvc-</u> <u>11576</u>	mp-19610	0.001	0.000	0.001				57					HO	LGa	ap.	NUI	e		0.002
wfid 1476040851.179557 Ca3Mn20	07 <u>mp-</u> <u>19042</u>	mp-19610	0.001	0.000	0.001	0.000	True	True	36	63	5.856	-9.573	0.000	41.817	0.3003	0.3341	0.3334	0.009	0.000	-0.002
wfid 1476040992.366616 Ca5P3CIC	012 mp- 39460	<u>mp-</u> 554236	0.000	0.000	0.002	0.000	True	True	173	176	2.131	-0.688	9.570	18.482	5.3528	0.4444	0.4460	0.005	0.000	0.004

All Ferroelectrics

Materials Project db contains **67,487** structures. **15,310** are polar.

(**10,242** distinct polar compositions).

Materials Project db contains **67,487** structures. **15,310** are polar. (**10,242** distinct polar compositions).

pymatgen

17,386 pairs satisfy basic group-subgroup relations (**1,615** distinct polar compositions).

OJECT

structures. **15,310** are polar.

(**10,242** distinct polar compositions).

pymatgen

17,386 pairs satisfy basic group-subgroup relations (**1,615** distinct polar compositions).

bilbao crystallographic server

432 have valid transformation matrices for < 1.5 Å distortion.

Intro. to Ferroelectrics → Search Overview → Search Details → Candidates → Future Work → Conclusions

63

Known or Proposed (77)

New (107)

100

50

25

10

1

Many searches to do!

- More databases!
- Nonpolar structures through pseudosymmetry.
- Structure types
- Substitutions
- Strain
- Multiferroics

Finding structure type pairs:

Anonymize the atoms and search for nonpolar-polar structure pairs.

Nonpolar Structure Type "Perovskite—CaTiO3" Spacegroup 221

Polar Structure Type "Perovskite—PbTiO3" Spacegroup 99

We must create new criteria to compare these candidates.

Intro. to Ferroelectrics \rightarrow Search Overview \rightarrow Search Details \rightarrow Candidates \rightarrow Future Work \rightarrow Conclusions

Shift-current photovoltaics

Topological ferroelectrics

Ferroelectric ferroaxials

Density change induced by excitation: $\rho \rightarrow \rho + \Delta$

Shift-current photovoltaics

Dr. Tonatiuh Rangel Gordillo Postdoc Neaton Group

Topological ferroelectrics

Dr. Sinead Griffin Postdoc Neaton Group

Ferroelectric ferroaxials

Prof. Jiri Hlinka Institute of Physics Czech Academy of Sciences

Shift-current photovoltaics

Dr. Tonatiuh Rangel Gordillo Postdoc Neaton Group

Topological ferroelectrics

Dr. Sinead Griffin Postdoc Neaton Group

Ferroelectric ferroaxials

Prof. Jiri Hlinka Institute of Physics Czech Academy of Sciences

			Dipole moment	Р	Т
			axial toroidal dipole moment	+1	+1
		week ending	electric dipole moment	-1	+1
PRL 116, 177602 (2016)	PHYSICAL REVIEW LETTERS	29 APRIL 2016	magnetic dipole moment	+1	-1
	Symmetry Guide to Ferroaxial Transitions		polar toroidal dipole moment	-1	-1
Institute of Dissi	J. Hlinka, [*] J. Privratska, P. Ondrejkovic, and V. Janovec	Parah Parahlia			

Institute of Physics, The Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic (Received 17 February 2016; published 28 April 2016)

The 212 species of the structural phase transitions with a macroscopic symmetry breaking are inspected with respect to the occurrence of the ferroaxial order parameter, the electric toroidal moment. In total, 124 ferroaxial species are found, some of them being also fully ferroelectric (62) or fully ferroelastic ones (61). This ensures a possibility of electrical or mechanical switching of ferroaxial domains. Moreover, there are 12 ferroaxial species that are neither ferroelectric nor ferroelastic. For each species, we have also explicitly worked out a canonical form for a set of representative equilibrium property tensors of polar and axial nature in both high-symmetry and low-symmetry phases. This information was gathered into the set of 212 mutually different symbolic matrices, expressing graphically the presence of nonzero independent tensorial components and the symmetry-imposed links between them, for both phases simultaneously. Symmetry analysis reveals the ferroaxiality in several currently debated materials, such as VO₂, LuFe₂O₄, and URu₂Si₂.

Contributed to atomate (built on FireWorks) and pymatgen

- Created atomate workflow for performing polarization calculations
- Created pymatgen.analysis.ferroelectricity module

This repository Search	Pull requests Issues Gist		۰ +- 🔊
📮 materialsproject / pymatgen		⊙ Watch - 97	★ Star 149 % Fork 186
⇔ Code ① Issues 27	requests 0 Projects 0 Wiki	4~ Pulse 🔢 Graphs	
pymatgen.analysis.	ferroelecticity module	#645	Edit
Merged shyuep merged 9 commits	into materialsproject:master from blondegeek:ma	ster 33 minutes ago	
Conversation 10 - Commits	9 🕄 Files changed 26		+50,550 -1
blondegeek commented a da	ay ago	Contributor + 🔛 🥒	Reviewers
This pull request contains the	🖞 shyuep 🗙 🗙		
spontaneous polarization and calculations for several struc	Assignees		
blondegeek added some	commits 3 days ago		Labels
added get_nearest_sit	None yet		
polarization classes in process, including several wrong ways to calc			
 Stashing changes to p 	 Stashing changes to polarization class mid update 		Projects
tests for pymatgen.an	alysis.ferroelectricity.polarization all pass	ing 13baa49	None yet

Intro. to Ferroelectrics \rightarrow Search Overview \rightarrow Search Details \rightarrow Candidates \rightarrow Results \rightarrow Conclusions

This is the first time the entire ferroelectric search workflow has been automated.

BaTiO₃

14

Our workflow is able to recover diverse ferroelectric candidates, known and new. This is the first time the entire ferroelectric search workflow has been automated.

Our workflow is able to recover diverse ferroelectric candidates, known and new.

Collaborators

Dr. Sebastian E. Reyes-Lillio Postdoc Neaton Group

Dr. Anubhav Jain Research Scientist LBL MSD

Prof. Jeff Neaton

But wait! There's more!

My Research: Understanding and designing complex materials from structural motifs

My Research: Understanding and designing complex materials from structural motifs

An Automated Ab Initio Search for Ferroelectrics

- T. Smidt et al, To be submitted to Phys. Rev. Lett. (2017)
- T. Smidt et al, To be submitted to Nature Scientific Data (2017)

My Research:

Understanding and designing complex materials from structural motifs

An Automated Ab Initio Search for Ferroelectrics

- T. Smidt et al, To be submitted to Phys. Rev. Lett. (2017)
- T. Smidt et al, To be submitted to Nature Scientific Data (2017)

2D optoelectronic properties of bulk hybrid organic-dichalgogenides

 M. Collins, T. Smidt et al, Submitted to Nano Letters (2017)

My Research:

Understanding and designing complex materials from structural motifs

An Automated Ab Initio Search for Ferroelectrics

- T. Smidt et al, To be submitted to Phys. Rev. Lett. (2017)
- T. Smidt et al, To be submitted to Nature Scientific Data (2017)

2D optoelectronic properties of bulk hybrid organic-dichalgogenides

 M. Collins, T. Smidt et al, Submitted to Nano Letters (2017)

Connectivity, Structure and Magnetism of Harmonic Honeycomb Iridates

- T. Smidt et al, To be submitted to Physical Review B (2017)
- K. Modic, T. Smidt et al, Nature communications 5 (2014).

My Research:

Understanding and designing complex materials from structural motifs

An Automated Ab Initio Search for Ferroelectrics

- T. Smidt et al, To be submitted to Phys. Rev. Lett. (2017)
- T. Smidt et al, To be submitted to Nature Scientific Data (2017)

2D optoelectronic properties of bulk hybrid organic-dichalgogenides

 M. Collins, T. Smidt et al, Submitted to Nano Letters (2017)

Connectivity, Structure and Magnetism of Harmonic Honeycomb Iridates

- T. Smidt et al, To be submitted to Physical Review B (2017)
- K. Modic, T. Smidt et al, Nature Communications 5 (2014).

Deep Generative Models for Materials Design

My Research: Understanding and designing complex materials from structural motifs

An Automated Ab Initio Search for Ferroelectrics

- T. Smidt et al, To be submitted to Phys. Rev. Lett. (2017)
- T. Smidt et al, To be submitted to Nature Scientific Data (2017)

2D optoelectronic properties of bulk hybrid organic-dichalgogenides

 M. Collins, T. Smidt et al, Submitted to Nano Letters (2017)

Connectivity, Structure and Magnetism of Harmonic Honeycomb Iridates

- T. Smidt et al, To be submitted to Physical Review B (2017)
- K. Modic, T. Smidt et al, Nature Communications 5 (2014).

Deep Generative Models for Materials Design

Connectivity, Structure and Magnetism of Harmonic Honeycomb **Iridates**

- T. Smidt et al, To be submitted to Physical Review B (2017)
- K. Modic, T. Smidt et al, Nature communications 5 (2014).

 A_2IrO_3

Deep Generative Models for Materials Design

Can we train an autoencoder to learn chemical motifs and generate new material structures?

To encoder local rotation invariance, we will develop a new type of convolutional layer based on spherical harmonic filters.

2 dimensional latent space for autoencoder trained on MNIST handwritten digit images

VAE Tutorial: https://jmetzen.github.io/2015-11-27/vae.html

We want to learn a smooth latent space where similar atomic structures are close together and interpolations are meaningful.

GEOMETRY AND ELECTRONIC STRUCTURE OF METAL-ORGANIC CHALCOGENIDE ASSEMBLIES (MOCHAS)

WHY MOCHAS?

The inorganic structure is continuous, lowdimensional, and <u>dominates</u> <u>electronic structure.</u>

WHY MOCHAS?

The inorganic structure is continuous, lowdimensional, and <u>dominates</u> <u>electronic structure.</u>

Organic ligands provide scaffolding for inorganic structure. Provides immense tunability.

WHY MOCHAS?

The inorganic structure is continuous, lowdimensional, and <u>dominates</u> <u>electronic structure.</u>

Organic ligands provide scaffolding for inorganic structure. Provides immense tunability. MOChAs self-assemble and can be synthesized at gram scale or as thin films.

HOW TO DESIGN MOCHAS?

Given ligand X and transition metal Y? → Combinatorial explosion!

HOW TO DESIGN MOCHAS?

Simplify problem by first focusing on design of inorganic structure.

Can we explore the low-dimensional inorganic structure independent of bulk?

- How much do VdW bonded subunits interact?
- How much does the ligand impact bands near the Fermi level?

HOW TO DESIGN MOCHAS?

Simplify problem by first focusing on design of inorganic structure.

Can we explore the low-dimensional inorganic structure independent of bulk?

- How much do VdW bonded subunits interact?
- How much does the ligand impact bands near the Fermi level?

GEOMETRY CASE STUDY: Pb Seesaw chalcogenide chains

Seesaw units. Pb and S.

C-S bonds. Carboranes coordinating chalcogenide

GEOMETRY CASE STUDY: Pb Seesaw chalcogenide chains

Seesaw units. Pb and S.

C-S bonds. Carboranes coordinating chalcogenide

Parameterize structure by two intra-unit parameters and one inter-unit parameter.

Biggest changes in electronic structure are driven by changes in bond lengths.

Band Gap (eV) [LDA]

AgSePh ("Mithrene")

- Organic bands and inorganic bands are well separated.
- Low mobility between layers.
- At the level of DFT with short-range exchange (HSE), layers no difference between single layer and bulk.

Ab initio Studies of Structural and Energetic Trends in the Harmonic Honeycomb Iridates: Li₂IrO₃ and Na₂IrO₃

Background

These materials host anisotropic quantum magnetism and interactions that may lead to a spin liquid.

They have complex magnetic orderings.

0, 1 and ∞ have been synthesized for Li₂IrO₃ and ∞ has been synthesized for Na₂IrO₃.

Results

Using DFT calculations at the level of PBE+SOC +U, we find the **homologous series is** energetically degenerate.

Furthermore, Li₂IrO₃ structure relaxations are sensitive to SOC+U while Na₂IrO₃ structures are not.

Using VCA calculations, we determine, this may be due Na inducing more distortion of the IrO₆ octahedra than Li.

Validation: We compare our calculated polarization values to experimentally measured values.

Number of polar structures in Materials Project by point group

Number of ferroelectric candidates from nonpolar-polar pairs in Materials Project by point

111

Polarization (µC/cm²) of validated ferroelectric candidates from nonpolar-polar pairs in Materials Project by point group.

Symmetry Analysis of Candidates

We use **pymatgen** to find nonpolar-polar structure pairs of the same composition that satisfy group-subgroup relationship.

H is a polar space group and **G** is a nonpolar space group.

 $H \subset G$

point groups of H and G

polar point groups

We then use python scripts to interact with the **Bilbao Crystallographic Server** to determine if we can transform the high symmetry nonpolar structure to the low symmetry polar setting.

Check the following:

- 1. Index
- 2. Path
- 3. Wyckoff splitting
- 4. Lattice compatibility
- 5. Match atomic positions

We then use python scripts to interact with the **Bilbao Crystallographic Server** to determine if we can transform the high symmetry nonpolar structure to the low symmetry polar setting.

We then use python scripts to interact with the **Bilbao Crystallographic Server** to determine if we can transform the high symmetry nonpolar structure to the low symmetry polar setting.

Check the following:

We then use python scripts to interact with the **Bilbao Crystallographic Server** to determine if we can transform the high symmetry nonpolar structure to the low symmetry polar setting.

Maximum k-index = 1

N. of subgroups (for k-index 1) found: 12

t-subgroups of space group Pm-3m (221)

1. Index		N	HM Symbol	ITA	index	t-index	k-index	More info	
2 Doth	rhombohedral	1	R3m	160	8	8	1	show	No chang
		2	R3	146	16	16	1	show	primitive
3. Wyckoff splitting	tetragonal	3	P4mm	099	6	6	1	show	volume f
4. Lattice compatibility	C	4	P4	075	12	12	1	show	subgroup
5 Match atomic	orthorhombic	5	Amm2	038	12	12	1	show	with $i_k =$
		6	Cmm2	035	12	12	1	show	
positions		7	Pmm2	025	12	12	1	show	
		8	Cm	008	24	24	1	show	
		9	Pm	006	24	24	1	show	
		10	C2	005	24	24	1	show	

003

001

24

48

24

48

1

1

show ...

show

11 P2

12 P1

We then use python scripts to interact with the **Bilbao Crystallographic Server** to determine if we can transform the high symmetry nonpolar structure to the low symmetry polar setting.

BaTiO₃ Different paths can lead to different Pm-3m transformations. Check the following: 1. Index cubic 2. Path 3. Wyckoff splitting Lattice compatibility 4. R-3m P-43m 5. Match atomic positions rhombohedral R3m

We then use python scripts to interact with the **Bilbao Crystallographic Server** to determine if we can transform the high symmetry nonpolar structure to the low symmetry polar setting.

BaTiO₃

Check the following:

- 1. Index
- 2. Path

3. Wyckoff splitting

- 4. Lattice compatibility
- 5. Match atomic positions

cubic	

3 symmetrically

unique positions

Wyckoff positions

Pm-3m	P4mm
48n	8g 8g 8g 8g 8g 8g
24m	4d 4d 8g 8g
241	4f 4f 4f 4f 8g
24k	4e 4e 4e 4e 8g
12j	4f 4f 4d
12i	4e 4e 4d
12h	4f 4e 2c 2c
8g	4d 4d
6f	4f 1b 1b
6e	4e 1a 1a
3d	2c 1a
3c	2c 1b
1b	1b
1a	1a

tetragonal

4 symmetrically unique positions

We then use python scripts to interact with the **Bilbao Crystallographic Server** to determine if we can transform the high symmetry nonpolar structure to the low symmetry polar setting.

Check the following:

- 1. Index
- 2. Path
- 3. Wyckoff splitting
- 4. Lattice compatibility
- 5. Match atomic positions

BaTiO₃ cubic \rightarrow orthorhombic

trans	form	ation	higł	n symn	netry	low symmetr					
r	matri>	<	latt	ice vec	ctors			setting			
(0)	1	1	(4.04)	0	0		(0	4.04	4.04		
0	-1	1	0	4.04	0	=	0	-4.04	4.04		
$\backslash 1$	0	0/	$\int 0$	0	4.04		(4.04)	0	0 /		

nonpolar

polar

 $\begin{aligned} a &= 4.04, b = 5.71, c = 5.71 & a = 3.99, b = 5.81, c = 5.89 \\ \alpha &= \beta = \gamma = 90^{\circ} & \alpha = \beta = \gamma = 90^{\circ} \end{aligned}$

We then use python scripts to interact with the **Bilbao Crystallographic Server** to determine if we can transform the high symmetry nonpolar structure to the low symmetry polar setting.

Check the following:

- 1. Index
- 2. Path
- 3. Wyckoff splitting
- 4. Lattice compatibility
- 5. Match atomic positions

Max displacement < 1.5 Å

	Optical gap	LDA	PWGGA	PBE	BLYP	P3PW	B3LYP	HF	Experiment
STO	Γ-Γ	2.36	2.31	2.35	2.27	3.96 (4.43)	3.89	12.33	3.75-direct gap
	X-X	2.94	2.79	2.84	2.72	4.53 (5.08)	4.42	13.04	3.25-indirect gap (Ref. [46])
	M-M	4.12	3.69	3.74	3.56	5.70 (6.45)	5.50	14.45	
	R-R	4.77	4.25	4.31	4.09	6.47 (7.18)	6.23	15.72	
	X-r	2.78	2.69	2.73	2.63	4.39	4.31	12.86	
	M- <i>I</i>	2.15	2.06	2.08	2.03	3.71 (4.23)	3.66	12.02	
	R- <i>I</i>	2.04	1.97	1.99	1.94	3.63 (4.16)	3.57	11.97	
BTO	Γ-Γ	1.98	1.97	1.99	1.91	3.55	3.49	11.73	3.2 (Ref. [47])
	X-X	2.85	2.73	2.74	2.57	4.39	4.26	12.83	
	M-M	3.81	3.47	3.50	3.24	5.39	5.19	14.11	
	R-R	4.45	4.03	4.07	3.76	6.12	5.89	15.22	
	X-Г	2.64	2.55	2.57	2.44	4.20	4.10	12.57	
	M- <i>L</i>	2.01	1.93	1.95	1.84	3.60	3.51	11.95	
	R- <i>L</i>	1.92	1.84	1.86	1.76	3.50	3.42	11.85	
PTO	Γ-Γ	2.65	2.61	2.65	2.48	4.32	4.15	12.74	3.4 (Ref. [48])
	X-X	1.54	1.68	1.70	1.77	3.02	3.05	10.24	
	M-M	3.78	3.58	3.61	3.33	5.55	5.33	13.76	
	R-R	4.16	3.91	3.94	3.65	5.98	5.78	15.07	
	X-Г	1.40	1.56	1.58	1.67	2.87	2.92	10.01	
	M-I	2.01	1.98	2.00	1.88	3.66	3.53	11.43	
	R-I	2.03	1.98	2.00	1.89	3.66	3.52	12.03	

Table 4 The calculated optical band gap (eV)

The results of previous CRYSTAL calculations [15] are given in the brackets.

Piskunov, S., et al. "Bulk properties and electronic structure of SrTiO 3, BaTiO 3, PbTiO 3 perovskites: an ab initio HF/DFT study." Computational Materials Science 29.2 (2004): 165-178.

Piskunov, S., et al. "Bulk properties and electronic structure of SrTiO 3, BaTiO 3, PbTiO 3 perovskites: an ab initio HF/DFT study." Computational Materials Science 29.2 (2004): 165-178.

Piskunov, S., et al. "Bulk properties and electronic structure of SrTiO 3, BaTiO 3, PbTiO 3 perovskites: an ab initio HF/DFT study." Computational Materials Science 29.2 (2004): 165-178.

Table 11.1. Characters for Γ_{equiv} for perovskite. The atoms that remain unchanged under each symmetry operation are indicated

	\boldsymbol{E}	$8C_3$	$3C_4^2$	$6C'_2$	$6C_4$	i	$8iC_3$	$3iC_4^2$	$6iC'_2$	$6iC_4$
$\Gamma^{ m equiv.}$	5	2	5	3	3	5	2	5	3	3
	all	Ba,Ti	all	Ba,Ti	Ba,Ti	all	Ba,Ti	all	Ba,Ti	Ba,Ti
				one O	one O				one O	one O

Table A.31. Character table for the cubic group O_h (cubic)[†]

							-1		2	
4 2 2	1	1	1	1	1	1	1	1	1	1
$egin{array}{l} x^*(y^2-z^2)+\ y^4(z^2-x^2)+\ z^4(x^2-y^2) \end{array}$	1	1	-1	-1	1	1	1	-1	-1	1
x^2-y^2 $x^2-x^2-y^2$	2	2	0	0	-1	2	2	0	0	-1
1, z	3	-1	1	-1	0	-3	1	-1	1	0
$(x^2 - y^2) \dots$	3	$^{-1}$	-1	1	0	-3	1	1	-1	0
$egin{aligned} &xyz[x^4(y^2-z^2)+y^4(z^2-x^2)+y^4(x^2-y^2)] \end{aligned}$	1	1	1	1	1	-1	-1	-1	-1	-1
	1	1	-1	-1	1	-1	$^{-1}$	1	1	-1
$x(x^2-y^2)\dots$	2	2	0	0	-1	-2	$^{-2}$	0	0	1
$(x^2-y^2)\dots$	3	-1	1	-1	0	3	$^{-1}$	1	$^{-1}$	0
yz, zx	3	$^{-1}$	-1	1	0	3	$^{-1}$	$^{-1}$	1	0
	$x^{4}(y^{2} - z^{2}) + y^{4}(z^{2} - x^{2}) + z^{4}(x^{2} - y^{2}) + z^{4}(x^{2} - y^{2}) + z^{4}(x^{2} - y^{2}) + z^{2}(x^{2} - x^{2} - y^{2}) + z^{2}(x^{2} - x^{2}) + z^{4}(x^{2} - x^{2}) + z^{4}(x^{2} - x^{2}) + z^{4}(x^{2} - y^{2}) + z^{4}(x^{2} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								

Dresselhaus, Mildred S., Gene Dresselhaus and Ado Jorio. Group theory: application to the physics of condensed matter. Springer Science & Business Media, 2007.

Important for many applications of group theory is the number of atoms within the primitive cell (for example for calculation of $\chi^{a.s.}$). For example, in Fig. 9.7(a) there is one atom per unit cell. This can be obtained from Fig. 9.7(a) by considering that only one eighth of each of the eight atoms shown in the figure is inside the cubic primitive cell. In Fig. 9.7(b) there are two distinct atoms per unit cell but for each $\Gamma^{a.s.} = \Gamma_1$ to give a total $\Gamma^{a.s.} = 2\Gamma_1$. In Fig. 9.7(c), there are one Ti, six half O, and eight 1/8 parts of Ba inside the primitive cell, giving altogether five atoms, i.e., one unit of **BaTiO₃** per unit cell. Here $\Gamma^{a.s.}$ for each of the Ba and Ti sublattices we have $\Gamma^{a.s.} = \Gamma_1$ but for the three oxygens $\Gamma^{a.s.} = \Gamma_1 + \Gamma_{12}$ to give a total of $\Gamma^{a.s.} = 3\Gamma_1 + \Gamma_{12}$ for the whole **BaTiO₃** molecule (see Sect. 11.3.2).

Dresselhaus, Mildred S., Gene Dresselhaus, and Ado Jorio. Group theory: application to the physics of condensed matter. Springer Science & Business Media, 2007.

Fig. 11.1. Phonon dispersion curves for a one-dimensional line of atoms with (a) a single mass and (b) two different masses m and M

Dresselhaus, Mildred S., Gene Dresselhaus and Ado Jorio. Group theory: application to the physics of condensed matter. Springer Science & Business Media, 2007.

$$\vec{P} = \vec{P_0} + \sum_{i \in 1,2,3} \frac{e\vec{R_i}}{\Omega}$$

e is the electron charge, R is a lattice vector, and Ω is the unit cell volume.

$$\vec{P} = \vec{P_0} + \sum_{i \in 1,2,3} \frac{\mathbf{e}\vec{R_i}}{\Omega}$$

e is the electron charge, R is a lattice vector, and Ω is the unit cell volume.

Change in polarization is a measurable observable and must be uniquely defined.

$$\vec{P} = \vec{P_0} + \sum_{i \in 1,2,3} \frac{e\vec{R_i}}{\Omega}$$

e is the electron charge, R is a lattice vector, and Ω is the unit cell volume.

Change in polarization is a measurable observable and must be uniquely defined.

$$\vec{P} = \vec{P_0} + \sum_{i \in 1,2,3} \frac{\mathbf{e}\vec{R_i}}{\Omega}$$

e is the electron charge, R is a lattice vector, and Ω is the unit cell volume.

Change in polarization is a measurable observable and must be uniquely defined.

$$\vec{P} = \vec{P_0} + \sum_{i \in 1,2,3} \frac{\mathbf{e}\vec{R_i}}{\Omega}$$

e is the electron charge, R is a lattice vector, and Ω is the unit cell volume.

Change in polarization is a measurable observable and must be uniquely defined.

$$\vec{P} = \vec{P_0} + \sum_{i \in 1,2,3} \frac{\mathbf{e}\vec{R_i}}{\Omega}$$

e is the electron charge, R is a lattice vector, and Ω is the unit cell volume.

Change in polarization is a measurable observable and must be uniquely defined.

Ferroelectrics are products of spontaneous symmetry breaking of a high symmetry structure.

Ferroelectrics are products of spontaneous symmetry breaking of a high symmetry structure.

We can write the Landau expansion of the free energy of a ferroelectric material (1D polarization) near its transition temperature as:

$$F = \frac{1}{2}a(T - T_0)P_z^2 + \frac{1}{4}bP_z^4 + \frac{1}{6}cP_z^6 - EP_z$$

Ferroelectrics are products of spontaneous symmetry breaking of a high symmetry structure.

We can write the Landau expansion of the free energy of a ferroelectric material (1D polarization) near its transition temperature as:

 $T > T_0$

 $T = T_0$ $T < T_0$

2nd order: b > 0

$$F = \frac{1}{2}a(T - T_0)P_z^2 + \frac{1}{4}bP_z^4 + \frac{1}{6}cP_z^6 - EP_z$$

138

1st order: b > 0

Post-processing: Algorithm for adjusting to the same branch polarization

Polarization is defined on a lattice

$$\vec{P} = \vec{P_0} + \sum_{i \in 1,2,3} \frac{\mathbf{e}\vec{R_i}}{\Omega}$$

e is the electron charge, R is a lattice vector, and Ω is the unit cell volume.

Polarization changes are observables and must be uniquely defined.

We use tools implemented in pymatgen for periodic structures to find the closest "image" to a given Cartesian coordinate.

We start with the nonpolar polarization closest to zero and iteratively find the closest polarization image of subsequent interpolations.

Algorithm for adjusting to the same branch polarization

This method can fail if there are insufficient interpolations to distinguish seemingly continuous branches. For example, large unit cells have smaller polarization quanta.

Algorithm chooses lowest consistent polarization.

Ferroelectrics can be used to make non-volatile RAM and possibly bulk shift current photovoltaics.

Electrons and holes move asymmetrically due to nonlinear optical processes and lack of inversion symmetry.

Ferroelectrics can serve as a testbed for new physics: e.g. topological ferroelectrics and ferroaxial ferroelectrics.

wfid_1476040947.794782

Polarization Adjusted (a,b,c)

Local minima for charge density (~30 candidates)

wfid_1476040802.838448

Typically have transition metal that can take multiple oxidation states.

Polarization Adjusted (a,b,c)

Energy

Distortion

Formula: LiFePO4 Polar SG: 33 Nonpolar SG: 63 PBE Gap: 3.2893 HSE Gap: None
Metallic interpolation (38 candidates)

wfid_1476041018.244845

Polarization Adjusted (a,b,c)

Energy

Distortion

Formula: AIN Polar SG: 186 Nonpolar SG: 194 PBE Gap: 4.0544 HSE Gap: None

Metallic interpolation (38 candidates)

wfid_1476041054.047338

Polarization Adjusted (a,b,c)

Energy

Distortion

Formula: RbVBr3 Polar SG: 185 Nonpolar SG: 194 PBE Gap: 0.6221 HSE Gap: None

