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What a computational materials physicist does:

Given an atomic structure,
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What a computational materials physicist does: _..where the electrons are...
...use quantum theory and

supercomputers to
determine...

Given an atomic structure, H ‘¢> E ‘¢>

Si

...and what the electrons are doing.
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Workflows are automated recipes that encode best practices for calculating materials properties.
We use them to screen materials for specific properties and applications.
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Workflows are automated recipes that encode best practices for calculating materials properties.
We use them to screen materials for specific properties and applications.

Y
N

Structures

Database

tens of thousands of structures

Properties

Elasticity

Thermal properties
Band gap

Electron mobility
Piezoelectricity

Magnetic materials

Batteries

Water-splitting catalysts
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However, screening is bottlenecked limited by our ability to propose hypothetical atomic structures.
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However, screening is bottlenecked limited by our ability to propose hypothetical atomic structures.
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Experimentalists are making new structures every day! These structures are not in existing databases.
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Frustrated quantum magnets
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Experimentalists are making new structures every day! These structures are not in existing databases.

Harmonic honeycomb iridates:
Frustrated quantum magnets

[ A B
= L h‘

OLi/Na @I 00

T. Smidt, S. Griffin, and J. B. Neaton, Ab initio
Studies of Structural and Energetic Trends in the
Harmonic Honeycomb Iridates, In preparation for
submission to Physical Review: B (2018).

Metal-organic chalcogenide assemblies (MOChAS):
2D electronic properties in a 3D crystal

K. Modic, T. Smidt, |. Kimchi et al., Realization of
a three-dimensional spin-anisotropic harmonic
honeycomb iridate, Nature Communications 5
(2014). (arXiv:1402.3254)

J.N. Hohman, M. Collins, and T. Smidt, Mithrene
and methods of fabrication of mithrene, (2017).
International Patent App. PCT/US20I7/045609.
Filed August 4, 2017.
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Materials are challenging to design because their 3D geometry and interactions are complex.
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Materials are challenging to design because their 3D geometry and interactions are complex.
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Materials are challenging to design because their 3D geometry and interactions are complex.
Ex: Hypothetical materials that | designed by hand (with parametric models).

2—2 = bond ratio

¢

1
O O

23



Materials are challenging to design because their 3D geometry and interactions are complex.
Ex: Hypothetical materials that | designed by hand (with parametric models).
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We need better tools to systematically generate new hypothetical atomic structures.



Deep learning can help accelerate existing tools and create new capabilities
for automating computational chemical and materials discovery.

Experimental
Structures

- Zoom!
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Elemental
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Properties
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Structures S gt
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1) Help compute properties faster.

2) Generate hypothetical structures based on experimentally observed motifs.

3) Generate structures with specific properties. [Need to do (2) first.]

25



Previous work

It is possible to train neural networks that
can predict properties with the accuracy of
gquantum-mechanical calculations between
2 and 5 orders of magnitude faster.

Tian Xie and Jeffrey C. Grossman. “Crystal Graph Convolutional
Neural Networks for an Accurate and Interpretable Prediction of
Material Properties”, Phys. Rev. Lett. 120, 145301 (2018)

DFT Targets
~ 103 seconds |E,wo, -.-

l -
D Tt
=\ =\ P

~ 102 seconds

J. Gilmer, S. S. Schoenholz, P. F. Riley, O.
Vinyals, and G. E. Dahl, "Neural Message
Passing for Quantum Chemistry." arXiv preprint
arXiv:1704.01212 (2017).

Anton V. Sinitskiy, Vijay S. Pande, “Deep Neural Network Computes
Electron Densities and Energies of a Large Set of Organic Molecules
Faster than Density Functional Theory (DFT)”, arXiv:1809.02723 26



Previous work

Deep learning techniques have also been
used to generate new molecules for
applications such as drugs and devices.

clcceecl clcceecl

Discrete Structure  ENCODER CONTINUOUSMOLECULAR  DECODER Discrete Structure

SMILES Neural Network REPRESENTATION Neural Network SMILES
Latent Space

Parameter optimization

Generative model

Oc(cclce2) cecclece2N

Generated

Reward SMILES
Predictive model
Property

<START>

Properties can be optimized using
learned continuous representation or
reinforcement learning.

clcccccl

Gbémez-Bombarelli, Rafael, et al. Mariva P ol darl
"Automatic chemical design using a Alarlyad op_I(_)va, h e>‘<%n _rfsayev, t
data-driven continuous exander 1ropsha, “kein orc_em:an :

learning for de novo drug design” Science o7

representation of molecules." ACS
Cent. Sci., 4 (2), pp 268-276(2018) Advances, Vol. 4, no. 7, eaap7885 (2018)



These examples used very different input
representations.

How to represent atomic systems to neural
networks is an open question.
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Many representations of
benzene...
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Many representations of
benzene...
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Many representations of
benzene...

Vector (Fingerprint

|
Image
||
| ||
| |
||

3D Coordinates

T OQOID Q@D Q@D QD QQm

-0

.21463
-0.
.57552
.34514
.78983
.72799
.81200
.98066
.38026
.14976
.59460
.53276

38325

Graph of bonds

.33136
.70334
.05450
.29630
.36935
.64566
.33310
.36774
.98192
.74025
.66708

.3%&;0



The following properties are useful for a network to have if one deals with geometry:

Translation equivariance

Rotation equivariance
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The following properties are useful for a network to have if one deals with geometry:

Translation equivariance
Convolutional neural

network v/

Rotation equivariance?
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The following properties are useful for a network to have if one deals with geometry:

Translation equivariance
Convolutional neural

network v/

Rotation equivariance
Dataaugmentation
Radiakfonet

Want a network that both
preserves geometry and
exploits symmetry.
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A network with 3D translation- and 3D rotation-equivariance allows us to
identify chemical motifs in any location or orientation using the same filters.

Rb Mn Cl;

Octahedral

coordination
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A network with 3D translation- and 3D rotation-equivariance allows us to
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Octahedral
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Previous networks applied to atomic systems either:

e cannot be extended to across all atomic systems
(molecules, materials, proteins, hybrid systems,
nanoclusters, etc) or

e throw out potentially useful geometric information.
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Previous networks applied to atomic systems either:
e cannot be extended to across all atomic systems
(molecules, materials, proteins, hybrid systems,
nanoclusters, etc) or

e throw out potentially useful geometric information.

We created a framework for deep
learning on atomic systems that

can naturally handle 3D geometry
and features of physical systems.

arXiv:1802.08219

Tensor Field Networks:
Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds

Nathaniel Thomas “! Tess Smidt “234 Steven Kearnes *

Abstract

We introduce tensor field networks, which are lo-
cally equivariant to 3D rotations and translations
(and invariant to permutations of points) at ev-
ery layer. 3D rotation equivariance removes the
need for data augmentation to identify features
in arbitrary orientations. Our network uses filters
built from spherical harmonics; due to the math-
ematical conseaguences of this filter choice. each

2 Feb 2018

Lusann Yang* LiLi* Kai Kohlhoff* Patrick Riley*

significantly more important in 3D than 2D. Without equiv-

ariant filters like those in our design, achieving an angular

resolution of § would require a factor of O(§~*) more fil-

ters in 2D but O(5~) more filters in 3D.! Second, a 3D
rotation- and translation-equivariant network can identify
local features in different orientations and locations with
the same filters, which is helpful for interpretability. Finally,
the network naturally encodes geometric tensors (such as

scalars, vectors, and higher-rank geometric objects), mathe-

RS P BT G I ML TN . L S
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Previous networks applied to atomic systems either:

e cannot be extended to across all atomic systems
(molecules, materials, proteins, hybrid systems,
nanoclusters, etc) or

e throw out potentially useful geometric information.

TLDR Convolutional filters
based on spherical
harmonics and learned

10 @

Spherical harmonics radial functions

We created a framework for deep
learning on atomic systems that

can naturally handle 3D geometry
and features of physical systems.

Everything in our network is a geometric
tensor, so our network connectivity has to
obey tensor algebra.
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Test of 3D rotation equivariance: Trained on 3D Tetris shapes in one orientation, our network can perfectly
identify these shapes in any orientation.

WL
*f/.." Ky

TRAIN

TEST
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Test of 3D rotation equivariance: Trained on 3D Tetris shapes in one orientation, our network can perfectly
identify these shapes in any orientation.
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Autoencoders can learn how
map data in its original
representation to a new

representation and back again.

The learned representation is
often very useful.

Input Latent Output
Space

Recognition Generation

Want Input = Output

Latent space is either small or has a
penalty to have a specified distribution.



2 dimensional latent
space for autoencoder 200

trained on MNIST

handwritten digit images

Example
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YARAN A A A A T T U W W W S A i B B
S EPNNNNYT T T T T T
S/ /7 /7 /7 /0T VYNNI T T T
/NN TY Y777 TTT
/7777110 VY7277 7T7TT11
J/7/7 /777188339 9777717711
rrr7 /7778885997777
S55555888S5999777717
S555553333%9949777111
300 5556663.‘)33‘,1‘1‘-{']’7‘1"\"
'FEEE 660632232 Vv999 71711
GEG6660664222202%99949ymm™~
FdIE666064a222200q4LYy""
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VAE Tutorial: https://imetzen.qgithub.io/2015-11-27/vae.html



https://jmetzen.github.io/2015-11-27/vae.html

| Add
Smiling

Remove
Smiling

| Add
Eyeglass

Remove
Eyeglass

https://houxianxu.github.io/assets/project/dfcvae

https://twitter.com/smilevector



An autoencoder trained on
atomic systems would solve
multiple problems at once.

Trained
Autoencoder

55



An autoencoder trained on
atomic systems would solve
multiple problems at once.

Trained

woencoy
N

Encode atomic
structure using
pre-trained
recognition
layers.

Train additional
neural net layers
for specific task.
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An autoencoder trained on
atomic systems would solve
multiple problems at once.

Trained

WOencoder

Generate
structure from ) Is structure in
/ \ learned latent ) database?

space

No

Is structure ( Computational

Database stable? stability workflow




An autoencoder trained on
atomic systems would solve
multiple problems at once.

Trained
Autoencoder

The latent space would
provide a "materials map".



Creating an autoencoder for discrete geometry

Reduce

geometry to R N

Discrete geometry Continuous
Latent Representation

Create
geometry from

single point. \(

Discrete geometry

(N dimensional vector)
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Creating an autoencoder for discrete geometry

Reduce Create

geometry to R N geometry from

\/ single point. single point. \/

Discrete geometry Continuous Discrete geometry
Latent Representation
(N dimensional vector)

_ _ _ + Encode geometry v/
Atomic structures are hierarchical and can + Encode hierarchy
be constructed from geometric motifs. + Decode geometry
+ Decode hierarchy
(Need to do this in a recursive manner)

60



Okay, so how did | get here?



My Thesis: Toward designing complex materials from structural motifs (The TLDR; version)

Ch 1: Introduction
Ch 2: Methods (DFT)

Ch 3: Realization of a three-dimensional spin-anisotropic harmonic honeycomb iridate
« K. Modic, T. Smidt et al, Nature Communications 5 (2014).

Ch 4: Ab initio Studies of Structural and Energetic Trends in the Harmonic Honeycomb Iridates
« T.Smidt et al, To be submitted to Physical Review B (2018)

Ch 5: Silver Benzeneselenolate is a Self-Assembling Direct-Gap Metal-Organic Chalcogenide
Assembly

« M. Collins, T. Smidt et al, In preparation.

Ch 6: An Automatically Curated First-Principles Database of Ferroelectrics
« T.Smidt et al, Submitted to Nature Scientific Data (2018)

Ch 7: Tensor field networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point

Clouds
e« N. Thomas*, T. Smidt* et al, arXiv:1802.08219

Ch 8: Outlook
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The Lunch Experiment: Randomized Controlled Lunches for Grad Students

| don't always eat lunch, but when | do,
| prefer The Lunch Experiment.

400+ participants
100+ lunches

Automated scheduling and invitation system
maximizing for diversity of majors.
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+ CS 182/282A

Spring 2019 CcOMPSCI 2824 001 - LEC 001 offered through Electrical Engineering and
Computer Sciences

Designing, Visualizing and Understanding Deep Neural
Networks

SAYLE LMKMANNNCOOWELL 6 Enimon

& John F Canny

E MW (0 8:00am-9:29 am © Dwinelle 145
Class #: 31116 Units: 4
Open Seats

30 Unreserved Seats

Deep Networks have revolutionized computer vision, language technology, robotics and control. They have growing impact in many
other areas of science and engineering. They do not however, follow a closed or compact set of theoretical principles. In Yann Lecun’s
words they require “an interplay between intuitive insights, theoretical modeling, practical implementations, empirical studies, and...
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In summary...

There’s a lot of work to do in applying deep learning
methods for tasks in atomic systems. Methods may not
work out of the box. Many technical design choices to make
and test.

Google is an amazing place to work. | highly recommend
interning during grad school if you can.

Berkeley Lab is in a great position to play a central role in
how ML methods are adopted in the chemistry and materials
communities.

Review on ML for molecules and materials:

Machine learning for molecular and materials science
Keith T. Butler, Daniel W. Davies, Hugh Cartwright,
Olexandr Isayev & Aron Walsh

Nature 559, 547-555 (2018).
https://doi.org/10.1038/s41586-018-0337-2

Come visit and chat about DL for atomic systems! My office is 50F-1643.



https://doi.org/10.1038/s41586-018-0337-2

Calling in backup (slides)!
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2011 Mixed Medium

TESS SMIDT // NATHANIEL THOMAS
MICHAEL STUNES // CHRISTY SWARTZ

http://blondegeek.net/cosmicray

ABOUT

HOW IT WORKS

VIDEO & PHOTOS




We use points. Images of atomic systems are sparse and imprecise.

VS.
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We use continuous convolutions
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We use points. Images of atomic systems are sparse and imprecise.

We use continuous convolutions
with atoms as convolution
centers.

Other
atoms 77

Convolution
center

We encode the symmetries of 3D Euclidean space (3D translation- and 3D rotation-equivariance).
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We use points. Images of atomic systems are sparse and imprecise.

We use continuous convolutions
with atoms as convolution
centers.

Other
atoms 77

Convolution
center

We encode the symmetries of 3D Euclidean space (3D translation- and 3D rotation-equivariance).
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Convolutional kernels...
with no symmetry:

W (7)

with 3D rotation equivariance:

R(r)

Y

Learned
Parameters
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Spherical harmonics L=0 ‘ angular portion of

hydrogenic wavefunctions

™m o
l basis functions for (2/ + 1)
L=1 @ z -

dimensional irreducible
representations of SO(3)

[nigo.quilez
https://en.wikipedia.org/wiki/SphericaI_harm??ics

m=2 m=3



https://commons.wikimedia.org/w/index.php?title=User:Inigo.quilez&action=edit&redlink=1

Spherical harmonics L=0 .

}/lm




Convolutional kernels...
with no symmetry:

W (7)

with 3D rotation equivariance:

R(r)

Y

)

Our filter choice requires the input, filters, and output of our
network to be geometric tensors and our network
connectivity to be compatible with tensor algebra.

Learned
Parameters
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Geometric tensors transform
predictably under 3D rotation.

Two point masses with velocity and

O

Same system, with rotated coordinates.
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Geometric tensors transform L=0
predictably under 3D rotation.

Two point masses with velocity and

PR ORI

Irreducible
representations

Same system, with rotated coordinates. Scalars fields l — O

Vectors fields l — 1

J" f\@ [=0®1@2

81



The input and output of our network is represented as tensors with
point (or atom), channel, and representation indices
organized by irreducible representation (L's and M's that index spherical harmonics).

i - <

Representation ——p

.

Points -

Channels -
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Filters contribute a representation index due to use of spherical harmonics.

R(r)

Representation ——p

Points -
Channels -
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To combine two tensors to create
one tensor, we uses Clebsch-Gordan
coefficients.

Representation ——p

Points ————p
Channels =)
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To combine two tensors to create
one tensor, we uses Clebsch Gordan

coefficients. 12 112} i frs ~ _ -
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D. Griffiths, Introduction to quantum mechanics



We can start with tensor input of any type and use filters to get tensor output of any type.
In this task, scalar masses are input and the moment of inertia tensor (a symmetric matrix) is output.

Moment of inertia:
0 (trace) + 2 (symmetric traceless)

0.75

0.50 1

0.25 -
0.00 1

—-0.25 A1

-0501 «

Radial function output

0754 == e
=== Maximum distance ke %
—1.00 1 ~~- Mean minimum distance 1
125 4 FO radial function, Step 10000
5 F2 radial function, Step 10000
-1.50 . T T
. 00 0.2 04 0.6 08 10
Representation =——p
Points ——p
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These are components of tensor field networks

Input

Clebsch-Gordan

Filter coefficients

Representation =————p

Points ————p
Channels =)

Rotation-equivariant
Nonlinearity

—]

NL

—
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This is what a two-layer tensor field network looks like:

NL

Representation ——p

Points -
Channgls —p
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We can start with tensor input of any type and use filters to get tensor output of any type.
In this task, scalar masses are input and gravitational acceleration vectors are output.

Representation =——p

Points ———p
Channels ———p

Output of learned radial function.

L
0 B : R s e asaas
1 r“o""-’.’
-2 - : /p-
N\ L
4 {Zhe ."
<
—6 - : : - _1]’3
-8 - Sl Step 1000
I
o | === Minimum distance of points
-10 — 'v T T T T T
000 025 050 075 100 125 150 175 200

Radial distance
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Given a small organic molecule with an atom removed, replace the
correct element at the correct location in space.

Input coordinates with
missing atom.

& D

(s

Network outputs

(N-1) atom type features (scalars),
(N-1) displacement vectors, and
(N-1) scalars indicating confidence
probability used for "voting".

Accuracy (%)

Number of Distance
Boms predictions (€054 MAE in A
and atom type)
5-18 (train) 15947 92.6 0.16
19 19000 94.7 0.15
23 23000 96.9 0.14
25-29 25404 97.8 0.17

Learns to replace atoms with over 90%
accuracy across train and test by seeing
the same 1,000 molecules 200 times.

90



