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...where the electrons are...

Given an atomic structure,

http://www.eecs.umich.edu/courses/eecs320/f00/bk7ch03.pdf
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Momentum

...and what the electrons are doing.

...use quantum theory and 
supercomputers to 
determine...

What a computational materials physicist does:

Si
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Workflows are automated recipes that encode best practices for calculating materials properties.
We use them to screen materials for specific properties and applications.
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tens of thousands of structures

Properties

Elasticity
Thermal properties
Band gap
Electron mobility
Piezoelectricity
...

Workflows are automated recipes that encode best practices for calculating materials properties.
We use them to screen materials for specific properties and applications.
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tens of thousands of structures

Properties

Photovoltaics

Water-splitting catalysts

Elasticity
Thermal properties
Band gap
Electron mobility
Piezoelectricity
...

Batteries
Magnetic materials

Workflows are automated recipes that encode best practices for calculating materials properties.
We use them to screen materials for specific properties and applications.
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Experimentalists are making new structures every day! These structures are not in existing databases. 

T. Smidt, S. Griffin, and J. B. Neaton, Ab initio 
Studies of Structural and Energetic Trends in the 
Harmonic Honeycomb Iridates, In preparation for 
submission to Physical Review: B (2018).

J.N. Hohman, M. Collins, and T. Smidt, Mithrene 
and methods of fabrication of mithrene, (2017). 
International Patent App. PCT/US20l7/045609. 
Filed August 4, 2017.

K. Modic, T. Smidt, I. Kimchi et al., Realization of 
a three-dimensional spin-anisotropic harmonic 
honeycomb iridate, Nature Communications 5 
(2014). (arXiv:1402.3254)
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Experimentalists are making new structures every day! These structures are not in existing databases. 
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Experimentalists are making new structures every day! These structures are not in existing databases. 

Harmonic honeycomb iridates: 
Frustrated quantum magnets

Metal-organic chalcogenide assemblies (MOChAs):
2D electronic properties in a 3D crystal



Materials are challenging to design because their 3D geometry and interactions are complex.
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Ex: Hypothetical materials that I designed by hand (with parametric models).
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Materials are challenging to design because their 3D geometry and interactions are complex.
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Produce new topologies that are chemically viable.Distort subunits to tune properties.

Ex: Hypothetical materials that I designed by hand (with parametric models).



We need better tools to systematically generate new hypothetical atomic structures.

Materials are challenging to design because their 3D geometry and interactions are complex.
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Produce new topologies that are chemically viable.

Ex: Hypothetical materials that I designed by hand (with parametric models).

Distort subunits to tune properties.



Deep learning can help accelerate existing tools and create new capabilities 
for automating computational chemical and materials discovery.

1) Help compute properties faster.

2) Generate hypothetical structures based on experimentally observed motifs.

3) Generate structures with specific properties. [Need to do (2) first.]

Zoom!
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Previous work

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. 
Vinyals, and G. E. Dahl, "Neural Message 
Passing for Quantum Chemistry." arXiv preprint 
arXiv:1704.01212 (2017).

It is possible to train neural networks that 
can predict properties with the accuracy of 
quantum-mechanical calculations between 
2 and 5 orders of magnitude faster.

26

Anton V. Sinitskiy, Vijay S. Pande, “Deep Neural Network Computes 
Electron Densities and Energies of a Large Set of Organic Molecules 
Faster than Density Functional Theory (DFT)”, arXiv:1809.02723

Tian Xie and Jeffrey C. Grossman. “Crystal Graph Convolutional 
Neural Networks for an Accurate and Interpretable Prediction of 
Material Properties”, Phys. Rev. Lett. 120, 145301 (2018)



Previous work

Properties can be optimized using 
learned continuous representation or 
reinforcement learning.

Deep learning techniques have also been 
used to generate new molecules for 
applications such as drugs and devices.

27

Mariya Popova, Olexandr Isayev, 
Alexander Tropsha, “Reinforcement 
learning for de novo drug design” Science 
Advances, Vol. 4, no. 7, eaap7885 (2018)

Gómez-Bombarelli, Rafael, et al. 
"Automatic chemical design using a 
data-driven continuous 
representation of molecules." ACS 
Cent. Sci., 4 (2), pp 268–276(2018)



These examples used very different input 
representations. (strings, graphs, images)

How to represent atomic systems to neural 
networks is an open question.
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Many representations of 
benzene...
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SMILES string:
C1=CC=CC=C1

Many representations of 
benzene...
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Graph of bonds



SMILES string:
C1=CC=CC=C1

Graph of bonds

Many representations of 
benzene...

Vector (Fingerprint)
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SMILES string:
C1=CC=CC=C1

Many representations of 
benzene...

Vector (Fingerprint)

Image 3D Coordinates
H         -0.21463        0.97837        0.33136
C         -0.38325        0.66317       -0.70334
C         -1.57552        0.03829       -1.05450
H         -2.34514       -0.13834       -0.29630
C         -1.78983       -0.36233       -2.36935
H         -2.72799       -0.85413       -2.64566
C         -0.81200       -0.13809       -3.33310
H         -0.98066       -0.45335       -4.36774
C          0.38026        0.48673       -2.98192
H          1.14976        0.66307       -3.74025
C          0.59460        0.88737       -1.66708
H          1.53276        1.37906       -1.3907035

Graph of bonds



36

Many representations of 
benzene...

Bonding Geometry Memory 
Efficient Universality

Fingerprints ? ? ✓ ?

SMILES ✓ X ✓ X

Graphs ✓ ? ? ?

Images X ✓ X ✓

Coordinates X ✓ ✓ ✓
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Graph of bonds
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SMILES string:
C1=CC=CC=C1

Many representations of 
benzene...

Vector (Fingerprint)

Image 3D Coordinates
H         -0.21463        0.97837        0.33136
C         -0.38325        0.66317       -0.70334
C         -1.57552        0.03829       -1.05450
H         -2.34514       -0.13834       -0.29630
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H         -2.72799       -0.85413       -2.64566
C         -0.81200       -0.13809       -3.33310
H         -0.98066       -0.45335       -4.36774
C          0.38026        0.48673       -2.98192
H          1.14976        0.66307       -3.74025
C          0.59460        0.88737       -1.66708
H          1.53276        1.37906       -1.3907039

Graph of bonds

X
?
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✓ ✓



Translation equivariance

Rotation equivariance

40

The following properties are useful for a network to have if one deals with geometry:



Translation equivariance
Convolutional neural 
network ✓

Rotation equivariance?
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The following properties are useful for a network to have if one deals with geometry:



Translation equivariance
Convolutional neural 
network ✓

Rotation equivariance
Data augmentation
Radial functions 
Want a network that both 
preserves geometry and 
exploits symmetry.

42

The following properties are useful for a network to have if one deals with geometry:



A network with 3D translation- and 3D rotation-equivariance allows us to 
identify chemical motifs in any location or orientation using the same filters.
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A network with 3D translation- and 3D rotation-equivariance allows us to 
identify chemical motifs in any location or orientation using the same filters.
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Previous networks applied to atomic systems either:
● cannot be extended to across all atomic systems 

(molecules, materials, proteins, hybrid systems, 
nanoclusters, etc) or 

● throw out potentially useful geometric information.



Previous networks applied to atomic systems either:
● cannot be extended to across all atomic systems 

(molecules, materials, proteins, hybrid systems, 
nanoclusters, etc) or 

● throw out potentially useful geometric information.
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We created a framework for deep 
learning on atomic systems that 
can naturally handle 3D geometry 
and features of physical systems.

Google Accelerated Science Team Stanford

Patrick 
Riley

Steve 
Kearnes

Nate 
Thomas

Lusann 
Yang

Kai 
Kohlhoff

Li
Li



Previous networks applied to atomic systems either:
● cannot be extended to across all atomic systems 

(molecules, materials, proteins, hybrid systems, 
nanoclusters, etc) or 

● throw out potentially useful geometric information.
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We created a framework for deep 
learning on atomic systems that 
can naturally handle 3D geometry 
and features of physical systems.

arXiv:1802.08219



Previous networks applied to atomic systems either:
● cannot be extended to across all atomic systems 

(molecules, materials, proteins, hybrid systems, 
nanoclusters, etc) or 

● throw out potentially useful geometric information.
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We created a framework for deep 
learning on atomic systems that 
can naturally handle 3D geometry 
and features of physical systems.

TLDR Convolutional filters 
based on spherical 
harmonics and learned 
radial functions

Everything in our network is a geometric 
tensor, so our network connectivity has to 
obey tensor algebra.



Math3ma.com



Test of 3D rotation equivariance: Trained on 3D Tetris shapes in one orientation, our network can perfectly 
identify these shapes in any orientation.
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A
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Chiral



Autoencoders can learn how 
map data in its original 
representation to a new 
representation and back again. 

The learned representation is 
often very useful.

Latent space is either small or has a 
penalty to have a specified distribution.



VAE Tutorial: https://jmetzen.github.io/2015-11-27/vae.html

Example 
MNIST digits: 

2 dimensional latent 
space for autoencoder 
trained on MNIST 
handwritten digit images

https://jmetzen.github.io/2015-11-27/vae.html


https://houxianxu.github.io/assets/project/dfcvae
https://twitter.com/smilevector
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An autoencoder trained on 
atomic systems would solve 
multiple problems at once.
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An autoencoder trained on 
atomic systems would solve 
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The latent space would 
provide a "materials map".

An autoencoder trained on 
atomic systems would solve 
multiple problems at once.
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Creating an autoencoder for discrete geometry

Continuous
Latent Representation
(N dimensional vector)

Discrete geometry Discrete geometry

Reduce 
geometry to 
single point.

Create 
geometry from 
single point.
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Creating an autoencoder for discrete geometry

Continuous
Latent Representation
(N dimensional vector)

Discrete geometry Discrete geometry

Reduce 
geometry to 
single point.

Create 
geometry from 
single point.

Atomic structures are hierarchical and can 
be constructed from geometric motifs. 

+ Encode geometry ✓
+ Encode hierarchy
+ Decode geometry
+ Decode hierarchy

(Need to do this in a recursive manner)



Okay, so how did I get here?



Ch 1: Introduction

Ch 2: Methods (DFT)

Ch 3: Realization of a three-dimensional spin-anisotropic harmonic honeycomb iridate 
• K. Modic, T. Smidt et al, Nature Communications 5 (2014).

Ch 4: Ab initio Studies of Structural and Energetic Trends in the Harmonic Honeycomb Iridates 
• T. Smidt et al, To be submitted to Physical Review B (2018)

Ch 5: Silver Benzeneselenolate is a Self-Assembling Direct-Gap Metal-Organic Chalcogenide 
Assembly 
• M. Collins, T. Smidt et al, In preparation.

Ch 6: An Automatically Curated First-Principles Database of Ferroelectrics
• T. Smidt et al, Submitted to Nature Scientific Data (2018)

Ch 7: Tensor field networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point 
Clouds 
• N. Thomas*, T. Smidt* et al, arXiv:1802.08219

Ch 8: Outlook

My Thesis: Toward designing complex materials from structural motifs (The TLDR; version)
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I don't always eat lunch, but when I do,
I prefer The Lunch Experiment.

400+ participants
100+ lunches

Automated scheduling and invitation system 
maximizing for diversity of majors.

The Lunch Experiment: Randomized Controlled Lunches for Grad Students
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Come visit and chat about DL for atomic systems! My office is 50F-1643.

In summary...
There’s a lot of work to do in applying deep learning 
methods for tasks in atomic systems. Methods may not 
work out of the box. Many technical design choices to make 
and test.

Google is an amazing place to work. I highly recommend 
interning during grad school if you can.

Berkeley Lab is in a great position to play a central role in 
how ML methods are adopted in the chemistry and materials 
communities.

Review on ML for molecules and materials:
Machine learning for molecular and materials science
Keith T. Butler, Daniel W. Davies, Hugh Cartwright, 
Olexandr Isayev & Aron Walsh 
Nature 559, 547–555 (2018).
https://doi.org/10.1038/s41586-018-0337-2

69

https://doi.org/10.1038/s41586-018-0337-2


Calling in backup (slides)!
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71http://blondegeek.net/cosmicray



We use points. Images of atomic systems are sparse and imprecise. 

vs.

We encode the symmetries of 3D Euclidean space (3D translation- and 3D rotation-equivariance).

Other  
atoms

Convolution 
center

We use continuous convolutions 
with atoms as convolution 
centers.

K. T. Schütt, P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, and K.-R. Müller, Adv. in 
Neural Information Processing Systems 30 (2017). (arXiv: 1706.08566)
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We encode the symmetries of 3D Euclidean space (3D translation- and 3D rotation-equivariance).

Other  
atoms

Convolution 
center

We use continuous convolutions 
with atoms as convolution 
centers.

K. T. Schütt, P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, and K.-R. Müller, Adv. in 
Neural Information Processing Systems 30 (2017). (arXiv: 1706.08566)

75



with no symmetry:  

with 3D rotation equivariance: 

Convolutional kernels... Learned
Parameters

76



L = 0

m = -1

L = 1

m = 0 m = 1

L = 2

L = 3
Inigo.quilez
https://en.wikipedia.org/wiki/Spherical_harmonics

m = 2 m = 3m = -2m = -3

Spherical harmonics angular portion of 
hydrogenic wavefunctions

basis functions for (2l + 1) 
dimensional irreducible 
representations of SO(3)

77

https://commons.wikimedia.org/w/index.php?title=User:Inigo.quilez&action=edit&redlink=1


L = 0

m = -1

L = 1

m = 0 m = 1

L = 2

L = 3

m = 2 m = 3m = -2m = -3

Spherical harmonics



with no symmetry:  

with 3D rotation equivariance: 

Convolutional kernels... Learned
Parameters

79

Our filter choice requires the input, filters, and output of our 
network to be geometric tensors and our network 
connectivity to be compatible with tensor algebra. 
(Everything has L and M indices like the spherical harmonics.)



Two point masses with velocity and acceleration.

Same system, with rotated coordinates.

80

Geometric tensors transform 
predictably under 3D rotation.



Scalars fields

Vectors fields

3x3 Matrix 
fields

L = 0

L = 1

L = 2

Geometric tensors transform 
predictably under 3D rotation.

Two point masses with velocity and acceleration.

Same system, with rotated coordinates.

Irreducible 
representations

81



=

The input and output of our network is represented as tensors with 
point (or atom), channel, and representation indices 
organized by irreducible representation (L’s and M’s that index spherical harmonics).
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Filters contribute a representation index due to use of spherical harmonics.
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To combine two tensors to create 
one tensor, we uses Clebsch-Gordan 
coefficients.

84



D. Griffiths, Introduction to quantum mechanics

To combine two tensors to create 
one tensor, we uses Clebsch-Gordan 
coefficients.
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Moment of inertia: 
0 (trace) + 2 (symmetric traceless)

86

We can start with tensor input of any type and use filters to get tensor output of any type. 
In this task, scalar masses are input and the moment of inertia tensor (a symmetric matrix) is output.



These are components of tensor field networks

Input Filter Clebsch-Gordan 
coefficients

Rotation-equivariant 
Nonlinearity
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This is what a two-layer tensor field network looks like:

88



We can start with tensor input of any type and use filters to get tensor output of any type. 
In this task, scalar masses are input and gravitational acceleration vectors are output.

89



Given a small organic molecule with an atom removed, replace the 
correct element at the correct location in space.

DATASET
QM9: http://www.quantum-machine.org/datasets/
134k molecules with 9 or less heavy atoms 
(non-hydrogen) and elements H, C, N, O, F.

TRAIN
1,000 molecules with 5-18 atoms

TEST
1,000 molecules with 19 atoms
1,000 molecules with 23 atoms
1,000 molecules with 25-29 atoms

Input coordinates with 
missing atom.

Network outputs 
(N-1) atom type features (scalars), 
(N-1) displacement vectors, and 
(N-1) scalars indicating confidence 
probability used for "voting".

Learns to replace atoms with over 90% 
accuracy across train and test by seeing 
the same 1,000 molecules 200 times.
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