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Atomic systems form geometric motifs that can 
appear at multiple locations and orientations.

How can we identify these rotated and 
translated motifs using the same filters?
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Atomic systems form geometric motifs that can 
appear at multiple locations and orientations.

The properties of physical systems transform 
predictably under rotation.

Can we construct a network that 
naturally handles these data types?

How can we identify these rotated and 
translated motifs using the same filters?
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Two point masses with velocity and acceleration.

Same system, with rotated coordinates.
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We created a network that can 
naturally handle 3D geometry 
and features of physical systems.

arXiv:1802.08219

● It can be applied to any type of atomic system (molecules, 
materials, proteins, hybrid systems, nanoclusters, etc.)

● And preserves geometric information (lengths and angles).



We use points. Images of atomic systems are sparse and imprecise. 

vs.

We encode the symmetries of 3D Euclidean space (3D translation- and 3D rotation-equivariance).

Other  
atoms

Convolution 
center

We use continuous convolutions 
with atoms as convolution 
centers.

K. T. Schütt, P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, and K.-R. Müller, Adv. in 
Neural Information Processing Systems 30 (2017). (arXiv: 1706.08566)
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Translation equivariance

Rotation equivariance
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Translation equivariance
Convolutional neural 
network ✓

Rotation equivariance?
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Translation equivariance
Convolutional neural 
network ✓

Rotation equivariance
Data augmentation
Radial functions 
Want a network that both 
preserves geometry and 
exploits symmetry.
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Previous work on 2D 
rotation-equivariance uses 
filters based on circular 
harmonics.

To extend to 3D, we use 
spherical harmonics.

Rotated image CNN filter output Harmonic filter output 12
http://visual.cs.ucl.ac.uk/pubs/harmonicNets/



with no symmetry:  

with 2D circular harmonics:

with 3D spherical harmonics:

Convolutional kernels... Learned
Parameters
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L = 0

m = -1

L = 1

m = 0 m = 1

L = 2

L = 3
Inigo.quilez
https://en.wikipedia.org/wiki/Spherical_harmonics

m = 2 m = 3m = -2m = -3

Spherical harmonics angular portion of 
hydrogenic wavefunctions

basis functions for (2l + 1) 
dimensional irreducible 
representations of SO(3)

basis functions for signals 
on a sphere

https://commons.wikimedia.org/w/index.php?title=User:Inigo.quilez&action=edit&redlink=1


Let g be a 3d 
rotation matrix.

a-1 +a0 +a1

= b-1 +b0 +b1

D is the Wigner-D matrix. 
It has shape                                
and is a function of g.

Spherical harmonics of a given L transform together under rotation.

g
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Going from 2D to 3D rotation-equivariance 
involves more than changing filters. 
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Going from 2D to 3D rotation-equivariance 
involves more than changing filters. 

Irreducible representations of 
SO(2) are all 1D.
Irreducible representations of 
SO(3) are (2l + 1) dimensional

For rotation matrices A and B...

In 2D:
AB = BA (abelian)

In 3D:
AB ≠ BA (nonabelian)



Our filter choice requires the input, filters, and output of our network to be 
geometric tensors and our network connectivity to be compatible with 
tensor algebra.
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Irreducible representations of 
SO(2) are all 1D.
Irreducible representations of 
SO(3) are (2l + 1) dimensional

Going from 2D to 3D rotation-equivariance 
involves more than changing filters. 

For rotation matrices A and B...

In 2D:
AB = BA (abelian)

In 3D:
AB ≠ BA (nonabelian)
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MultidimensionalArray
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Geometric tensors transform 
predictably under 3D rotation.

Two point masses with velocity and acceleration.

Same system, with rotated coordinates.
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Scalars fields

Vectors fields

3x3 Matrix 
fields

L = 0

L = 1

L = 2

Geometric tensors transform 
predictably under 3D rotation.

Two point masses with velocity and acceleration.

Same system, with rotated coordinates.

Irreducible 
representations
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=

The input and output of our network is represented as tensors with 
point (or atom), channel, and representation indices 
organized by irreducible representation.
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=

The input and output of our network is represented as tensors with 
point (or atom), channel, and representation indices 
organized by irreducible representation.
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Filters contribute a representation index due to use of spherical harmonics.

25



Filters contribute a representation index due to use of spherical harmonics.
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This is where the geometric 
information is used. 

For images this is always the 
same (a grid). For points, this 
changes for every example.



To combine two tensors to create 
one tensor, we uses Clebsch-Gordan 
coefficients.
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To combine two tensors to create 
one tensor, we uses Clebsch-Gordan 
coefficients.

28
D. Griffiths, Introduction to quantum mechanics

Same math 
involved in the 
addition of 
angular 
momentum.



These are components of tensor field networks

Input Filter Clebsch-Gordan 
coefficients

Rotation-equivariant 
Nonlinearity
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This is what a two-layer tensor field network looks like:
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… and this is what one layer (without NL) looks like with all the indices written out:
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… and this is what one layer (without NL) looks like with all the indices written out:
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… and this is what one layer (without NL) looks like with all the indices written out:
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Test of 3D rotation equivariance: Trained on 3D Tetris shapes in one orientation, our network can perfectly 
identify these shapes in any orientation.

TR
A

IN
TE

ST
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Test of 3D rotation equivariance: Trained on 3D Tetris shapes in one orientation, our network can perfectly 
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Chiral



We can start with tensor input of any type and use filters to get tensor output of any type. 
In this task, scalar masses are input and gravitational acceleration vectors are output.
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Moment of inertia: 
0 (trace) + 2 (symmetric traceless)
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We can start with tensor input of any type and use filters to get tensor output of any type. 
In this task, scalar masses are input and the moment of inertia tensor (a symmetric matrix) is output.



Given a small organic molecule with an atom removed, replace the 
correct element at the correct location in space.

DATASET
QM9: http://www.quantum-machine.org/datasets/
134k molecules with 9 or less heavy atoms 
(non-hydrogen) and elements H, C, N, O, F.

TRAIN
1,000 molecules with 5-18 atoms

TEST
1,000 molecules with 19 atoms
1,000 molecules with 23 atoms
1,000 molecules with 25-29 atoms

Input coordinates with 
missing atom.

Network outputs 
(N-1) atom type features (scalars), 
(N-1) displacement vectors, and 
(N-1) scalars indicating confidence 
probability used for "voting".

Learns to replace atoms with over 90% 
accuracy across train and test by seeing 
the same 1,000 molecules 200 times.
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Conclusion

We've created a neural network architecture 
that operates on points and has the symmetries 
of 3D Euclidean space (3D translation- and 3D 
rotation-equivariance).

We use convolutional filters restricted to 
spherical harmonics with a learned radial 
function. 

As a consequence of this choice of filter, the 
inputs, filters, and outputs of our network are 
geometric tensor fields. 

We expect this network to be generally useful 
for tasks in geometry, physics and chemistry.
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Paper:
arXiv:1802.08219

Code for paper:
https://github.com/tensorfieldnetworks/tensorfieldnetworks

Refactor coming soon:
https://github.com/mariogeiger/se3cnn

https://github.com/tensorfieldnetworks/tensorfieldnetworks
https://github.com/mariogeiger/se3cnn


Calling in backup (slides)!
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Missing point task results
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3D Tetris classification network diagram
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Benjamin Crowell, General Relativity, p. 256.



visual proof of 3d rotation equivariance
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To be rotation-equivariant, the following relationship must hold for each layer:

  Relative vector matrix

g
  Relative vector matrix
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Each component of the network must be individually rotation-equivariant to 
guarantee the network rotation equivariance.

g

g
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More explicitly...
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The key property of the Clebsch-Gordan coefficient tensor:
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Putting it all together, we can show that the layers are equivariant.

=

=

g
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Math3ma.com



Examples of tensor algebra: How to combine a scalar and a vector? Easy!
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Irreducible
Representations



Examples of tensor algebra: How to combine two vectors? Many ways.
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Dot 
product

Cross
product

Outer 
product

Irreducible
Representations



To combine two tensors to create 
one tensor, we uses Clebsch-Gordan 
coefficients.
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Our filter choice requires the structure of our 
network to be compatible with the algebra of 
geometric tensors.

L = 0

L = 1

L = 2
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Stefan Chmiela, Alexandre Tkatchenko, Huziel E. Sauceda, Igor Poltavsky, Kristof T. Schütt and Klaus-Robert Müller, 
Machine learning of accurate energy-conserving molecular force fields
Science Advances, Vol. 3, no. 5 e1603015 (2017)
DOI: 10.1126/sciadv.1603015

(Smooth, decaying) Vector fields can be decomposed into a conservative field and a solenoid field. A 
conservative vector field can be expressed as the gradient of a scalar field and the solenoidal field as the curl 
of a vector field.
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