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Atomic systems form geometric motifs that can
appear at multiple locations and orientations.

Motivation

|

Octahedral
coordination

Rb Mn Cls

How can we identify these rotated and
translated motifs using the same filters?



Atomic systems form geometric motifs that can
appear at multiple locations and orientations.

Motivation

|

Octahedral
coordination

Rb Mn Cls

How can we identify these rotated and
translated motifs using the same filters?

The properties of physical systems transform
predictably under rotation.

Two point masses with velocity and

1.7 O

Same system, with rotated coordinates.

Can we construct a network that
naturally handles these data types?



We created a network that can e |t can be applied to any type of atomic system (molecules,
naturally handle 3D geometry materials, proteins, hybrid systems, nanoclusters, etc.)
and features of physical systems. e And preserves geometric information (lengths and angles).
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We use points. Images of atomic systems are sparse and imprecise.

VS.




We use points. Images of atomic systems are sparse and imprecise.
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We use continuous convolutions
with atoms as convolution
centers.

Other
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Convolution
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We use points. Images of atomic systems are sparse and imprecise.

We use continuous convolutions
with atoms as convolution
centers.

Other
atoms 77

Convolution
center

We encode the symmetries of 3D Euclidean space (3D translation- and 3D rotation-equivariance).




Translation equivariance

Rotation equivariance




Translation equivariance
Convolutional neural

network v/

Rotation equivariance?
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Translation equivariance
Convolutional neural

network v/

Rotation equivariance
Dataaugmentation
Radiakfonet

Want a network that both
preserves geometry and

exploits symmetry.
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Previous work on 2D
rotation-equivariance uses
filters based on circular
harmonics.

To extend to 3D, we use
spherical harmonics.

Apr 2017

Rotated image

Harmonic Networks: Deep Translation and Rotation Equivariance
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Abstract

University College London*

Translating or rotating an input image should not affect the
results of many computer vision tasks. Convolutional neural net-
works (CNNs) are already translation equivariant: input image

CNN filter output

translations produce proportionate feature map translations.
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Harmonic filter output
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Convolutional kernels...

with no symmetry:

W (7)

with 2D circular harmonics:

R(r)

with 3D spherical harmonics:

R(r)Y," (
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Learned
Parameters
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Spherical harmonics L=0 ‘ angular portion of

hydrogenic wavefunctions

i l basis functions for (2/ + 1)

dimensional irreducible

representations of SO(3)

-1 @@ @
basis functions for signals

on a sphere

[nigo.quilez
https://en.wikipedia.org/wiki/Spherical_harmonics

m=2 m=3


https://commons.wikimedia.org/w/index.php?title=User:Inigo.quilez&action=edit&redlink=1

Spherical harmonics of a given L transform together under rotation.

D is the Wigner-D matrix.
- ===, lthas shape[(2[ + 1,20 + 1]

and is a function of g.

Let g be a 3d
rotation matrix.

|
|
\d
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Going from 2D to 3D rotation-equivariance
involves more than changing filters.
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Going from 2D to 3D rotation-equivariance
involves more than changing filters.

For rotation matrices A and B...

In 2D:

AB = BA
In 3D:

AB # BA
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Going from 2D to 3D rotation-equivariance
involves more than changing filters.

For rotation matrices A and B...

In 2D:

AB = BA
In 3D:

AB # BA

Our filter choice requires the input, filters, and output of our network to be
geometric tensors and our network connectivity to be compatible with
tensor algebra.
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MultidimensionalArray



Geometric tensors transform
predictably under 3D rotation.

Two point masses with velocity and

O

Same system, with rotated coordinates.

@
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Geometric tensors transform
predictably under 3D rotation.

Two point masses with velocity and

w2 s X § & e
L0

representations

Scalars fields l — O

Same system, with rotated coordinates.

Vectors fields l — 1

,J—> f\@ (=08 162
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The input and output of our network is represented as tensors with
point (or atom), channel, and representation indices
organized by irreducible representation.

(l) . {0: [[[mO]],[[m1]]],
- 1: [[[vOx, vOy, vO0z], [ 11,

[[vix, vl1y, vl1z], [ 1117

1 :dictionary key, [

[ ] point index, a

[ ] channel index, ¢

[ ] representation index, m
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The input and output of our network is represented as tensors with
point (or atom), channel, and representation indices
organized by irreducible representation.

2y

= IN

Representation =——p-

Points =———p

Channels =——p
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Filters contribute a representation index due to use of spherical harmonics.

R(r)

Representation ——p

Points -
Channels -
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Filters contribute a representation index due to use of spherical harmonics.

R(r

Convolution
center

Representation ——p

This is where the geometric
information is used.

Points -

For images this is always the

5 same (a grid). For points, this
Channels changes for every example.
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To combine two tensors to create
one tensor, we uses Clebsch-Gordan
coefficients.

Representation ——p

Points ————p
Channels =)
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To combine two tensors to create
one tensor, we uses Clebsch-Gordan

. . 1
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D. Griffiths, Introduction to quantum mechanics



These are components of tensor field networks

Input

Clebsch-Gordan

Filter coefficients

Representation =————p

Points ————p
Channels =)

Rotation-equivariant
Nonlinearity

—]

NL

—
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This is what a two-layer tensor field network looks like:

NL

Representation ——p

Points -
Channgls —p
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.. and this is what one layer (without NL) looks like with all the indices written out:

(o) (f’a 17409 )

acmo ) Tacmyg

. (lo,mo) lp,l =5 (Ir)
=) [EHE > B

mp,mjy bES’




... and this is what one layer (without NL) looks like with all the indices written out:

o) (f,?a 17409

acmo

) Tacmyg

>

mpgp,mrjy

)

(lO ’mO)
(lF ’mF)(lI’mI)

2,

beS

F(lF,lI)

cmpg

(Fab)

V(lI)

bem I

F(lF,lI)

C’I’TLF

(Fab> —

(Ir,lr) (IF) (2
R, (Tab)YmFF (Tab)
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... and this is what one layer (without NL) looks like with all the indices written out:

£02) (7,

acmo

17409

ach)

Y &

(lO 7m0)
(lF ’mF)(lI’mI)

mpgp,mrjy

2,

beS

(el (Fab)v(h)

cmpg

bem I
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F(lFalI) (Fab) —
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(r) (p
YmFF (Tab)

Rc(:lF’lI)(rab) =

2.
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h
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Test of 3D rotation equivariance: Trained on 3D Tetris shapes in one orientation, our network can perfectly
identify these shapes in any orientation.

WL
*f/.." Ky

TRAIN

TEST
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Test of 3D rotation equivariance: Trained on 3D Tetris shapes in one orientation, our network can perfectly
identify these shapes in any orientation.

Far
5

Chiral

TRAIN

TEST



We can start with tensor input of any type and use filters to get tensor output of any type.
In this task, scalar masses are input and gravitational acceleration vectors are output.

Representation =——p

Points ———p
Channels ———p

Output of learned radial function.

L
0 B : R s e asaas
1 r“o""-’.’
-2 - : /p-
N\ L
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-8 - Sl Step 1000
I
o | === Minimum distance of points
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Radial distance
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We can start with tensor input of any type and use filters to get tensor output of any type.
In this task, scalar masses are input and the moment of inertia tensor (a symmetric matrix) is output.

Moment of inertia:
0 (trace) + 2 (symmetric traceless)

0.75

0.50 1

0.25 -
0.00 1

—-0.25 A1

-0501 «

Radial function output

0754 == e
=== Maximum distance ke %
—1.00 1 ~~- Mean minimum distance 1
125 4 FO radial function, Step 10000
5 F2 radial function, Step 10000
-1.50 . T T
. 00 0.2 04 0.6 08 10
Representation =——p
Points ——p
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Given a small organic molecule with an atom removed, replace the
correct element at the correct location in space.

Input coordinates with
missing atom.

& D

(s

Network outputs

(N-1) atom type features (scalars),
(N-1) displacement vectors, and
(N-1) scalars indicating confidence
probability used for "voting".

Accuracy (%)

Number of Distance
Boms predictions (€054 MAE in A
and atom type)
5-18 (train) 15947 92.6 0.16
19 19000 94.7 0.15
23 23000 96.9 0.14
25-29 25404 97.8 0.17

Learns to replace atoms with over 90%
accuracy across train and test by seeing
the same 1,000 molecules 200 times.
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Conclusion

We've created a neural network architecture
that operates on points and has the symmetries
of 3D Euclidean space (3D translation- and 3D
rotation-equivariance).

We use convolutional filters restricted to
spherical harmonics with a learned radial
function.

As a consequence of this choice of filter, the
inputs, filters, and outputs of our network are
geometric tensor fields.

We expect this network to be generally useful
for tasks in geometry, physics and chemistry.

22

Paper:
arXiv:1802.08219

Code for paper:
https://qgithub.com/tensorfieldnetworks/tensorfieldnetworks

Refactor coming soon:
https://github.com/mariogeiger/se3cnn
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https://github.com/tensorfieldnetworks/tensorfieldnetworks
https://github.com/mariogeiger/se3cnn

Calling in backup (slides)!
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Missing point task results Number of

: Accuracy (%) ;
e atoms with (<05A Dlstapce
100 giventype . 4%iom type) MAE in A
in set yP
Hydrogen
801 5-18 (train) 7269 94.6 0.16
19 10067 929 0.17
R €0 - 23 14004 96.4 0.15
‘i 25-29 16409 97.8 0.19
& Carbon
2 404
g 5-18 (train) 5713 94.6 0.16
—e— Train (5-18 atoms) 19 6812 99.8 0.10
20 1 —o— Test (19 atoms) 23 7851 99.9 0.11
—o— Test (23 atoms) 25-29 8272 99.8 0.14
=& Test (25-29 atoms) Nitrogen
07 ' ‘ ' ‘ 5-18 (train) 1426 842 0.16
—&— Train (5-18 atoms) %g Szg g?,?; 8{3
20 ~&— Test (19 atoms) 2529 17 58.8 0'20
a —&~ Test (23 atoms) : )
S —&— Test (25-29 atoms) Oxygen
© 15 - 5-18 (train) 1498 85.7 0.16
2 19 1522 87.5 0.20
w 23 1097 82.9 0.21
< 104 25-29 706 73.1 0.21
g Fluorine
2 o 5-18 (train) 41 0.0 0.12
' 19 0
| 23 0
: : '. e '. \ 25-29 0
0 50 100 150 200

Number of Epochs



3D Tetris classification network diagram

O O-PO 0 O->O=—0 0 0

1—131=1

Key

Global
Pool Softmax

->O=—0 0 00— |-

/ [4 x 8]

-» L=0 Convolution ==« Self-interaction —= Concatenation
-» L=1 Convolution = Nonlinearity [:] Fully Connected
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i
Physics e

- ®)

(2) Rotated 90 (3) Rotated about
X degrees about x. x, then y.
(1) The book in its ‘ "
original orientation. /j‘/ ‘ ? ‘
>
( T
(4) Rotated 90
degrees about y. (5) Rotated about
y, then x.

Benjamin Crowell, General Relativity, p. 256.
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visual proof of 3d rotation equivariance
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To be rotation-equivariant, the following relationship must hold for each layer:

___J.___I

—{E—

l Relative vector matrix I
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Each component of the network must be individually rotation-equivariant to
guarantee the network rotation equivariance.

.9 —2D)—

IN | j—pp- IN >
| F——

A 4=




More explicitly...
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The key property of the Clebsch-Gordan coefficient tensor:
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Putting it all together, we can show that the layers are equivariant.

OuT

22
|

22!

9
—p <OuT

&

22
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scalov mulhphaahovl w\akes sense
J = okou,\ %#

buk what & we want +o multiply +wo vectows ?

o U “Hwes' V = o.°~?ﬁs‘6.“ 2.2

N~ . . ! '?“
Lhad do (e weo. by “Hnes" 2 2? '

ANSWER : +the. TENSOR PRODUCT !
ueN

Math3ma.com



Examples of tensor algebra: How to combine a scalar and a vector? Easy!

Q
X
Sl
|
QY

51



Examples of tensor algebra: How to combine two vectors? Many ways.

bi
Dot —
product (a”i a; ak) bj = C
bi,
T 7k
Cross — " -
product @ X b= a; a; ag|l ==¢c
b b by
Outer A; aibz
product a; (bz bj bk;) = ajbz
ar arb;

a; bj
ajb;

akbj

aibk
G,jbk
ay by

0D 1D 2
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To combine two tensors to create
one tensor, we uses Clebsch-Gordan
coefficients.

0®1=1 1®1=001D2

0 1 1 1
1 0 1 2
1 1 1 1
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Ouir filter choice requires the structure of our
network to be compatible with the algebra of
geometric tensors.

x (x,1y, 2)

x (xy, yz, zx,
224 — x% — Tl
$2 o y2)

oe 00 ©
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(Smooth, decaying) Vector fields can be decomposed into a conservative field and a solenoid field. A
conservative vector field can be expressed as the gradient of a scalar field and the solenoidal field as the curl
of a vector field.

/ I¥ \ Helmholtz decomposition

|
1
y ¥ ¥ v v A 4 I A ASKA\w ¥V » <y > A w Y ) A \Y ', 4 v
|
A A AY & b 4 A L > A wy A« ¥ F4 nqgerr)y VIA €4 A\P
1
F X WY K ¥ A ¥ | Yy P oAy xy & 4 Y 4 aYsEs « » 4 4 » ‘A A
<« > » “« < » | — — | A A g V| = | T ALY |+ |74 p/y ¢ A
|
R A A AR x A A fl‘.4144‘y> A4 A AR % | Yoo by 4\t
Yy 9 YA ¥ 4 :4444AP o Vi W R YAV A y 4D
>
A oA AY & AYA » :[44;1-‘»* 4 A b o Y 4 A vy« 4y 4
5y ’ S A0 T\ VS e/ (I
N 5 | e N . - . .
Ground truth Samples | Vector field Conservative field Solenoidal field
e o e e e e e e e e am em e Em em m am Em am m Em AR Am A SR AR A Am AR Am M mR AR A S Sm Am em e em am s e

Stefan Chmiela, Alexandre Tkatchenko, Huziel E. Sauceda, Igor Poltavsky, Kristof T. Schitt and Klaus-Robert Miller,

Machine learning of accurate energy-conserving molecular force fields
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