Recent
Upcoming Talks
Code
Recent Preprints / Publications
Resume / CV
Past talks
Mischief
This tutorial uses a combination of slides and interactive jupyter notebooks using the e3nn
framework to present fundamental concepts about Euclidean equivariant neural networks: data types, equivariant operations, how symmetry effects simple tasks, and how to construct the building blocks of e3nn
. This tutorial was originally presented at IPAM at UCLA on November 14, 2019.
e3nn
: A framework for Euclidean symmetry equivariant neural networksConvolutional neural networks for point clouds and voxels with Euclidean symmetries (3D translation and 3D rotation). The current code is a merger of the work from Tensor field networks and 3D Steerable CNNs.
Simon Batzner, Tess E. Smidt, Lixin Sun, Jonathan P. Mailoa, Mordechai Kornbluth, Nicola Molinari, Boris Kozinsky, arXiv (2021). arXiv:2101.03164
Tess E. Smidt, Mario Geiger, and Benjamin Kurt Miller, Physical Review Research (2021). arXiv:2007.02005
accompanying code repository
Zhantao Chen, Nina Andrejevic, Tess Smidt, Zhiwei Ding, Yen-Ting Chi, Quynh T. Nguyen, Ahmet Alatas, Jing Kong, Mingda Li, arXiv (2020). arXiv:2009.05163
Tess E. Smidt, Trends in Chemistry (2020). DOI:10.26434/chemrxiv.12935198
Benjamin Kurt Miller, Mario Geiger, Tess E. Smidt, Frank Noé, arXiv (2020). arXiv:2008.08461
Maserati, L. et al, Materials Horizons (2020). DOI:10.1039/C9MH01917K
Smidt, T.E., Mack, S.A., Reyes-Lillo, S.E. et al. Sci Data 7, 72 (2020).
code:
pymatgen.analysis.ferroelectricity /
atomate…workflow…ferroelectric
data:
ferroelectric_search_site
figshare data deposit
code: paper repo / recent – e3nn